help
Generic implementation of the ECDH algorithm
+config CRYPTO_ECRDSA
+ tristate "EC-RDSA (GOST 34.10) algorithm"
+ select CRYPTO_ECC
+ select CRYPTO_AKCIPHER
+ select CRYPTO_STREEBOG
+ help
+ Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
+ RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
+ standard algorithms (called GOST algorithms). Only signature verification
+ is implemented.
+
comment "Authenticated Encryption with Associated Data"
config CRYPTO_CCM
ecdh_generic-y += ecdh_helper.o
obj-$(CONFIG_CRYPTO_ECDH) += ecdh_generic.o
+$(obj)/ecrdsa_params.asn1.o: $(obj)/ecrdsa_params.asn1.c $(obj)/ecrdsa_params.asn1.h
+$(obj)/ecrdsa_pub_key.asn1.o: $(obj)/ecrdsa_pub_key.asn1.c $(obj)/ecrdsa_pub_key.asn1.h
+$(obj)/ecrdsa.o: $(obj)/ecrdsa_params.asn1.h $(obj)/ecrdsa_pub_key.asn1.h
+ecrdsa_generic-y += ecrdsa.o
+ecrdsa_generic-y += ecrdsa_params.asn1.o
+ecrdsa_generic-y += ecrdsa_pub_key.asn1.o
+obj-$(CONFIG_CRYPTO_ECRDSA) += ecrdsa_generic.o
+
#
# generic algorithms and the async_tx api
#
case OID_sha224WithRSAEncryption:
ctx->cert->sig->hash_algo = "sha224";
goto rsa_pkcs1;
+
+ case OID_gost2012Signature256:
+ ctx->cert->sig->hash_algo = "streebog256";
+ goto ecrdsa;
+
+ case OID_gost2012Signature512:
+ ctx->cert->sig->hash_algo = "streebog512";
+ goto ecrdsa;
}
rsa_pkcs1:
ctx->cert->sig->encoding = "pkcs1";
ctx->algo_oid = ctx->last_oid;
return 0;
+ecrdsa:
+ ctx->cert->sig->pkey_algo = "ecrdsa";
+ ctx->cert->sig->encoding = "raw";
+ ctx->algo_oid = ctx->last_oid;
+ return 0;
}
/*
return -EINVAL;
}
- if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0) {
+ if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 ||
+ strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0) {
/* Discard the BIT STRING metadata */
if (vlen < 1 || *(const u8 *)value != 0)
return -EBADMSG;
{
struct x509_parse_context *ctx = context;
- if (ctx->last_oid != OID_rsaEncryption)
+ ctx->key_algo = ctx->last_oid;
+ if (ctx->last_oid == OID_rsaEncryption)
+ ctx->cert->pub->pkey_algo = "rsa";
+ else if (ctx->last_oid == OID_gost2012PKey256 ||
+ ctx->last_oid == OID_gost2012PKey512)
+ ctx->cert->pub->pkey_algo = "ecrdsa";
+ else
return -ENOPKG;
- ctx->cert->pub->pkey_algo = "rsa";
-
/* Discard the BIT STRING metadata */
if (vlen < 1 || *(const u8 *)value != 0)
return -EBADMSG;
/*
- * Copyright (c) 2013, Kenneth MacKay
- * All rights reserved.
+ * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
+ * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
#include <linux/fips.h>
#include <crypto/ecdh.h>
#include <crypto/rng.h>
+#include <asm/unaligned.h>
+#include <linux/ratelimit.h>
#include "ecc.h"
#include "ecc_curve_defs.h"
return (vli[bit / 64] & ((u64)1 << (bit % 64)));
}
+static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
+{
+ return vli_test_bit(vli, ndigits * 64 - 1);
+}
+
/* Counts the number of 64-bit "digits" in vli. */
static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
{
return ((num_digits - 1) * 64 + i);
}
+/* Set dest from unaligned bit string src. */
+void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
+{
+ int i;
+ const u64 *from = src;
+
+ for (i = 0; i < ndigits; i++)
+ dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
+}
+EXPORT_SYMBOL(vli_from_be64);
+
+void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
+{
+ int i;
+ const u64 *from = src;
+
+ for (i = 0; i < ndigits; i++)
+ dest[i] = get_unaligned_le64(&from[i]);
+}
+EXPORT_SYMBOL(vli_from_le64);
+
/* Sets dest = src. */
static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
{
return carry;
}
+/* Computes result = left + right, returning carry. Can modify in place. */
+static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
+ unsigned int ndigits)
+{
+ u64 carry = right;
+ int i;
+
+ for (i = 0; i < ndigits; i++) {
+ u64 sum;
+
+ sum = left[i] + carry;
+ if (sum != left[i])
+ carry = (sum < left[i]);
+ else
+ carry = !!carry;
+
+ result[i] = sum;
+ }
+
+ return carry;
+}
+
/* Computes result = left - right, returning borrow. Can modify in place. */
u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
unsigned int ndigits)
}
EXPORT_SYMBOL(vli_sub);
+/* Computes result = left - right, returning borrow. Can modify in place. */
+static u64 vli_usub(u64 *result, const u64 *left, u64 right,
+ unsigned int ndigits)
+{
+ u64 borrow = right;
+ int i;
+
+ for (i = 0; i < ndigits; i++) {
+ u64 diff;
+
+ diff = left[i] - borrow;
+ if (diff != left[i])
+ borrow = (diff > left[i]);
+
+ result[i] = diff;
+ }
+
+ return borrow;
+}
+
static uint128_t mul_64_64(u64 left, u64 right)
{
+ uint128_t result;
+#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
+ unsigned __int128 m = (unsigned __int128)left * right;
+
+ result.m_low = m;
+ result.m_high = m >> 64;
+#else
u64 a0 = left & 0xffffffffull;
u64 a1 = left >> 32;
u64 b0 = right & 0xffffffffull;
u64 m1 = a0 * b1;
u64 m2 = a1 * b0;
u64 m3 = a1 * b1;
- uint128_t result;
m2 += (m0 >> 32);
m2 += m1;
result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
result.m_high = m3 + (m2 >> 32);
-
+#endif
return result;
}
result[ndigits * 2 - 1] = r01.m_low;
}
+/* Compute product = left * right, for a small right value. */
+static void vli_umult(u64 *result, const u64 *left, u32 right,
+ unsigned int ndigits)
+{
+ uint128_t r01 = { 0 };
+ unsigned int k;
+
+ for (k = 0; k < ndigits; k++) {
+ uint128_t product;
+
+ product = mul_64_64(left[k], right);
+ r01 = add_128_128(r01, product);
+ /* no carry */
+ result[k] = r01.m_low;
+ r01.m_low = r01.m_high;
+ r01.m_high = 0;
+ }
+ result[k] = r01.m_low;
+ for (++k; k < ndigits * 2; k++)
+ result[k] = 0;
+}
+
static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
{
uint128_t r01 = { 0, 0 };
vli_add(result, result, mod, ndigits);
}
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^k-c, for small c (note the minus sign)
+ *
+ * References:
+ * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
+ * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
+ * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
+ */
+static void vli_mmod_special(u64 *result, const u64 *product,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 c = -mod[0];
+ u64 t[ECC_MAX_DIGITS * 2];
+ u64 r[ECC_MAX_DIGITS * 2];
+
+ vli_set(r, product, ndigits * 2);
+ while (!vli_is_zero(r + ndigits, ndigits)) {
+ vli_umult(t, r + ndigits, c, ndigits);
+ vli_clear(r + ndigits, ndigits);
+ vli_add(r, r, t, ndigits * 2);
+ }
+ vli_set(t, mod, ndigits);
+ vli_clear(t + ndigits, ndigits);
+ while (vli_cmp(r, t, ndigits * 2) >= 0)
+ vli_sub(r, r, t, ndigits * 2);
+ vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
+ * where k-1 does not fit into qword boundary by -1 bit (such as 255).
+
+ * References (loosely based on):
+ * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
+ * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
+ * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
+ *
+ * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
+ * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
+ * Algorithm 10.25 Fast reduction for special form moduli
+ */
+static void vli_mmod_special2(u64 *result, const u64 *product,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 c2 = mod[0] * 2;
+ u64 q[ECC_MAX_DIGITS];
+ u64 r[ECC_MAX_DIGITS * 2];
+ u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
+ int carry; /* last bit that doesn't fit into q */
+ int i;
+
+ vli_set(m, mod, ndigits);
+ vli_clear(m + ndigits, ndigits);
+
+ vli_set(r, product, ndigits);
+ /* q and carry are top bits */
+ vli_set(q, product + ndigits, ndigits);
+ vli_clear(r + ndigits, ndigits);
+ carry = vli_is_negative(r, ndigits);
+ if (carry)
+ r[ndigits - 1] &= (1ull << 63) - 1;
+ for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
+ u64 qc[ECC_MAX_DIGITS * 2];
+
+ vli_umult(qc, q, c2, ndigits);
+ if (carry)
+ vli_uadd(qc, qc, mod[0], ndigits * 2);
+ vli_set(q, qc + ndigits, ndigits);
+ vli_clear(qc + ndigits, ndigits);
+ carry = vli_is_negative(qc, ndigits);
+ if (carry)
+ qc[ndigits - 1] &= (1ull << 63) - 1;
+ if (i & 1)
+ vli_sub(r, r, qc, ndigits * 2);
+ else
+ vli_add(r, r, qc, ndigits * 2);
+ }
+ while (vli_is_negative(r, ndigits * 2))
+ vli_add(r, r, m, ndigits * 2);
+ while (vli_cmp(r, m, ndigits * 2) >= 0)
+ vli_sub(r, r, m, ndigits * 2);
+
+ vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod, where product is 2N words long.
+ * Reference: Ken MacKay's micro-ecc.
+ * Currently only designed to work for curve_p or curve_n.
+ */
+static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
+ unsigned int ndigits)
+{
+ u64 mod_m[2 * ECC_MAX_DIGITS];
+ u64 tmp[2 * ECC_MAX_DIGITS];
+ u64 *v[2] = { tmp, product };
+ u64 carry = 0;
+ unsigned int i;
+ /* Shift mod so its highest set bit is at the maximum position. */
+ int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
+ int word_shift = shift / 64;
+ int bit_shift = shift % 64;
+
+ vli_clear(mod_m, word_shift);
+ if (bit_shift > 0) {
+ for (i = 0; i < ndigits; ++i) {
+ mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
+ carry = mod[i] >> (64 - bit_shift);
+ }
+ } else
+ vli_set(mod_m + word_shift, mod, ndigits);
+
+ for (i = 1; shift >= 0; --shift) {
+ u64 borrow = 0;
+ unsigned int j;
+
+ for (j = 0; j < ndigits * 2; ++j) {
+ u64 diff = v[i][j] - mod_m[j] - borrow;
+
+ if (diff != v[i][j])
+ borrow = (diff > v[i][j]);
+ v[1 - i][j] = diff;
+ }
+ i = !(i ^ borrow); /* Swap the index if there was no borrow */
+ vli_rshift1(mod_m, ndigits);
+ mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
+ vli_rshift1(mod_m + ndigits, ndigits);
+ }
+ vli_set(result, v[i], ndigits);
+}
+
+/* Computes result = product % mod using Barrett's reduction with precomputed
+ * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
+ * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
+ * boundary.
+ *
+ * Reference:
+ * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
+ * 2.4.1 Barrett's algorithm. Algorithm 2.5.
+ */
+static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
+ unsigned int ndigits)
+{
+ u64 q[ECC_MAX_DIGITS * 2];
+ u64 r[ECC_MAX_DIGITS * 2];
+ const u64 *mu = mod + ndigits;
+
+ vli_mult(q, product + ndigits, mu, ndigits);
+ if (mu[ndigits])
+ vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
+ vli_mult(r, mod, q + ndigits, ndigits);
+ vli_sub(r, product, r, ndigits * 2);
+ while (!vli_is_zero(r + ndigits, ndigits) ||
+ vli_cmp(r, mod, ndigits) != -1) {
+ u64 carry;
+
+ carry = vli_sub(r, r, mod, ndigits);
+ vli_usub(r + ndigits, r + ndigits, carry, ndigits);
+ }
+ vli_set(result, r, ndigits);
+}
+
/* Computes p_result = p_product % curve_p.
* See algorithm 5 and 6 from
* http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
}
}
-/* Computes result = product % curve_prime
- * from http://www.nsa.gov/ia/_files/nist-routines.pdf
-*/
+/* Computes result = product % curve_prime for different curve_primes.
+ *
+ * Note that curve_primes are distinguished just by heuristic check and
+ * not by complete conformance check.
+ */
static bool vli_mmod_fast(u64 *result, u64 *product,
const u64 *curve_prime, unsigned int ndigits)
{
u64 tmp[2 * ECC_MAX_DIGITS];
+ /* Currently, both NIST primes have -1 in lowest qword. */
+ if (curve_prime[0] != -1ull) {
+ /* Try to handle Pseudo-Marsenne primes. */
+ if (curve_prime[ndigits - 1] == -1ull) {
+ vli_mmod_special(result, product, curve_prime,
+ ndigits);
+ return true;
+ } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
+ curve_prime[ndigits - 2] == 0) {
+ vli_mmod_special2(result, product, curve_prime,
+ ndigits);
+ return true;
+ }
+ vli_mmod_barrett(result, product, curve_prime, ndigits);
+ return true;
+ }
+
switch (ndigits) {
case 3:
vli_mmod_fast_192(result, product, curve_prime, tmp);
vli_mmod_fast_256(result, product, curve_prime, tmp);
break;
default:
- pr_err("unsupports digits size!\n");
+ pr_err_ratelimited("ecc: unsupported digits size!\n");
return false;
}
return true;
}
+/* Computes result = (left * right) % mod.
+ * Assumes that mod is big enough curve order.
+ */
+void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 product[ECC_MAX_DIGITS * 2];
+
+ vli_mult(product, left, right, ndigits);
+ vli_mmod_slow(result, product, mod, ndigits);
+}
+EXPORT_SYMBOL(vli_mod_mult_slow);
+
/* Computes result = (left * right) % curve_prime. */
static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
const u64 *curve_prime, unsigned int ndigits)
vli_set(result->y, ry[0], ndigits);
}
+/* Computes R = P + Q mod p */
+static void ecc_point_add(const struct ecc_point *result,
+ const struct ecc_point *p, const struct ecc_point *q,
+ const struct ecc_curve *curve)
+{
+ u64 z[ECC_MAX_DIGITS];
+ u64 px[ECC_MAX_DIGITS];
+ u64 py[ECC_MAX_DIGITS];
+ unsigned int ndigits = curve->g.ndigits;
+
+ vli_set(result->x, q->x, ndigits);
+ vli_set(result->y, q->y, ndigits);
+ vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
+ vli_set(px, p->x, ndigits);
+ vli_set(py, p->y, ndigits);
+ xycz_add(px, py, result->x, result->y, curve->p, ndigits);
+ vli_mod_inv(z, z, curve->p, ndigits);
+ apply_z(result->x, result->y, z, curve->p, ndigits);
+}
+
+/* Computes R = u1P + u2Q mod p using Shamir's trick.
+ * Based on: Kenneth MacKay's micro-ecc (2014).
+ */
+void ecc_point_mult_shamir(const struct ecc_point *result,
+ const u64 *u1, const struct ecc_point *p,
+ const u64 *u2, const struct ecc_point *q,
+ const struct ecc_curve *curve)
+{
+ u64 z[ECC_MAX_DIGITS];
+ u64 sump[2][ECC_MAX_DIGITS];
+ u64 *rx = result->x;
+ u64 *ry = result->y;
+ unsigned int ndigits = curve->g.ndigits;
+ unsigned int num_bits;
+ struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
+ const struct ecc_point *points[4];
+ const struct ecc_point *point;
+ unsigned int idx;
+ int i;
+
+ ecc_point_add(&sum, p, q, curve);
+ points[0] = NULL;
+ points[1] = p;
+ points[2] = q;
+ points[3] = ∑
+
+ num_bits = max(vli_num_bits(u1, ndigits),
+ vli_num_bits(u2, ndigits));
+ i = num_bits - 1;
+ idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
+ point = points[idx];
+
+ vli_set(rx, point->x, ndigits);
+ vli_set(ry, point->y, ndigits);
+ vli_clear(z + 1, ndigits - 1);
+ z[0] = 1;
+
+ for (--i; i >= 0; i--) {
+ ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits);
+ idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
+ point = points[idx];
+ if (point) {
+ u64 tx[ECC_MAX_DIGITS];
+ u64 ty[ECC_MAX_DIGITS];
+ u64 tz[ECC_MAX_DIGITS];
+
+ vli_set(tx, point->x, ndigits);
+ vli_set(ty, point->y, ndigits);
+ apply_z(tx, ty, z, curve->p, ndigits);
+ vli_mod_sub(tz, rx, tx, curve->p, ndigits);
+ xycz_add(tx, ty, rx, ry, curve->p, ndigits);
+ vli_mod_mult_fast(z, z, tz, curve->p, ndigits);
+ }
+ }
+ vli_mod_inv(z, z, curve->p, ndigits);
+ apply_z(rx, ry, z, curve->p, ndigits);
+}
+EXPORT_SYMBOL(ecc_point_mult_shamir);
+
static inline void ecc_swap_digits(const u64 *in, u64 *out,
unsigned int ndigits)
{
{
u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
+ if (WARN_ON(pk->ndigits != curve->g.ndigits))
+ return -EINVAL;
+
/* Check 1: Verify key is not the zero point. */
if (ecc_point_is_zero(pk))
return -EINVAL;
#ifndef _CRYPTO_ECC_H
#define _CRYPTO_ECC_H
+/* One digit is u64 qword. */
#define ECC_CURVE_NIST_P192_DIGITS 3
#define ECC_CURVE_NIST_P256_DIGITS 4
-#define ECC_MAX_DIGITS ECC_CURVE_NIST_P256_DIGITS
+#define ECC_MAX_DIGITS (512 / 64)
#define ECC_DIGITS_TO_BYTES_SHIFT 3
u8 ndigits;
};
+#define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits }
+
/**
* struct ecc_curve - definition of elliptic curve
*
u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
unsigned int ndigits);
+/**
+ * vli_from_be64() - Load vli from big-endian u64 array
+ *
+ * @dest: destination vli
+ * @src: source array of u64 BE values
+ * @ndigits: length of both vli and array
+ */
+void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
+
+/**
+ * vli_from_le64() - Load vli from little-endian u64 array
+ *
+ * @dest: destination vli
+ * @src: source array of u64 LE values
+ * @ndigits: length of both vli and array
+ */
+void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
+
/**
* vli_mod_inv() - Modular inversion
*
void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
unsigned int ndigits);
+/**
+ * vli_mod_mult_slow() - Modular multiplication
+ *
+ * @result: where to write result value
+ * @left: vli number to multiply with @right
+ * @right: vli number to multiply with @left
+ * @mod: modulus
+ * @ndigits: length of all vlis
+ *
+ * Note: Assumes that mod is big enough curve order.
+ */
+void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
+ const u64 *mod, unsigned int ndigits);
+
+/**
+ * ecc_point_mult_shamir() - Add two points multiplied by scalars
+ *
+ * @result: resulting point
+ * @x: scalar to multiply with @p
+ * @p: point to multiply with @x
+ * @y: scalar to multiply with @q
+ * @q: point to multiply with @y
+ * @curve: curve
+ *
+ * Returns result = x * p + x * q over the curve.
+ * This works faster than two multiplications and addition.
+ */
+void ecc_point_mult_shamir(const struct ecc_point *result,
+ const u64 *x, const struct ecc_point *p,
+ const u64 *y, const struct ecc_point *q,
+ const struct ecc_curve *curve);
#endif
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Elliptic Curve (Russian) Digital Signature Algorithm for Cryptographic API
+ *
+ * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
+ *
+ * References:
+ * GOST 34.10-2018, GOST R 34.10-2012, RFC 7091, ISO/IEC 14888-3:2018.
+ *
+ * Historical references:
+ * GOST R 34.10-2001, RFC 4357, ISO/IEC 14888-3:2006/Amd 1:2010.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the Free
+ * Software Foundation; either version 2 of the License, or (at your option)
+ * any later version.
+ */
+
+#include <linux/module.h>
+#include <linux/crypto.h>
+#include <crypto/streebog.h>
+#include <crypto/internal/akcipher.h>
+#include <crypto/akcipher.h>
+#include <linux/oid_registry.h>
+#include "ecrdsa_params.asn1.h"
+#include "ecrdsa_pub_key.asn1.h"
+#include "ecc.h"
+#include "ecrdsa_defs.h"
+
+#define ECRDSA_MAX_SIG_SIZE (2 * 512 / 8)
+#define ECRDSA_MAX_DIGITS (512 / 64)
+
+struct ecrdsa_ctx {
+ enum OID algo_oid; /* overall public key oid */
+ enum OID curve_oid; /* parameter */
+ enum OID digest_oid; /* parameter */
+ const struct ecc_curve *curve; /* curve from oid */
+ unsigned int digest_len; /* parameter (bytes) */
+ const char *digest; /* digest name from oid */
+ unsigned int key_len; /* @key length (bytes) */
+ const char *key; /* raw public key */
+ struct ecc_point pub_key;
+ u64 _pubp[2][ECRDSA_MAX_DIGITS]; /* point storage for @pub_key */
+};
+
+static const struct ecc_curve *get_curve_by_oid(enum OID oid)
+{
+ switch (oid) {
+ case OID_gostCPSignA:
+ case OID_gostTC26Sign256B:
+ return &gost_cp256a;
+ case OID_gostCPSignB:
+ case OID_gostTC26Sign256C:
+ return &gost_cp256b;
+ case OID_gostCPSignC:
+ case OID_gostTC26Sign256D:
+ return &gost_cp256c;
+ case OID_gostTC26Sign512A:
+ return &gost_tc512a;
+ case OID_gostTC26Sign512B:
+ return &gost_tc512b;
+ /* The following two aren't implemented: */
+ case OID_gostTC26Sign256A:
+ case OID_gostTC26Sign512C:
+ default:
+ return NULL;
+ }
+}
+
+static int ecrdsa_verify(struct akcipher_request *req)
+{
+ struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
+ struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm);
+ unsigned char sig[ECRDSA_MAX_SIG_SIZE];
+ unsigned char digest[STREEBOG512_DIGEST_SIZE];
+ unsigned int ndigits = req->dst_len / sizeof(u64);
+ u64 r[ECRDSA_MAX_DIGITS]; /* witness (r) */
+ u64 _r[ECRDSA_MAX_DIGITS]; /* -r */
+ u64 s[ECRDSA_MAX_DIGITS]; /* second part of sig (s) */
+ u64 e[ECRDSA_MAX_DIGITS]; /* h \mod q */
+ u64 *v = e; /* e^{-1} \mod q */
+ u64 z1[ECRDSA_MAX_DIGITS];
+ u64 *z2 = _r;
+ struct ecc_point cc = ECC_POINT_INIT(s, e, ndigits); /* reuse s, e */
+
+ /*
+ * Digest value, digest algorithm, and curve (modulus) should have the
+ * same length (256 or 512 bits), public key and signature should be
+ * twice bigger.
+ */
+ if (!ctx->curve ||
+ !ctx->digest ||
+ !req->src ||
+ !ctx->pub_key.x ||
+ req->dst_len != ctx->digest_len ||
+ req->dst_len != ctx->curve->g.ndigits * sizeof(u64) ||
+ ctx->pub_key.ndigits != ctx->curve->g.ndigits ||
+ req->dst_len * 2 != req->src_len ||
+ WARN_ON(req->src_len > sizeof(sig)) ||
+ WARN_ON(req->dst_len > sizeof(digest)))
+ return -EBADMSG;
+
+ sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, req->src_len),
+ sig, req->src_len);
+ sg_pcopy_to_buffer(req->src,
+ sg_nents_for_len(req->src,
+ req->src_len + req->dst_len),
+ digest, req->dst_len, req->src_len);
+
+ vli_from_be64(s, sig, ndigits);
+ vli_from_be64(r, sig + ndigits * sizeof(u64), ndigits);
+
+ /* Step 1: verify that 0 < r < q, 0 < s < q */
+ if (vli_is_zero(r, ndigits) ||
+ vli_cmp(r, ctx->curve->n, ndigits) == 1 ||
+ vli_is_zero(s, ndigits) ||
+ vli_cmp(s, ctx->curve->n, ndigits) == 1)
+ return -EKEYREJECTED;
+
+ /* Step 2: calculate hash (h) of the message (passed as input) */
+ /* Step 3: calculate e = h \mod q */
+ vli_from_le64(e, digest, ndigits);
+ if (vli_cmp(e, ctx->curve->n, ndigits) == 1)
+ vli_sub(e, e, ctx->curve->n, ndigits);
+ if (vli_is_zero(e, ndigits))
+ e[0] = 1;
+
+ /* Step 4: calculate v = e^{-1} \mod q */
+ vli_mod_inv(v, e, ctx->curve->n, ndigits);
+
+ /* Step 5: calculate z_1 = sv \mod q, z_2 = -rv \mod q */
+ vli_mod_mult_slow(z1, s, v, ctx->curve->n, ndigits);
+ vli_sub(_r, ctx->curve->n, r, ndigits);
+ vli_mod_mult_slow(z2, _r, v, ctx->curve->n, ndigits);
+
+ /* Step 6: calculate point C = z_1P + z_2Q, and R = x_c \mod q */
+ ecc_point_mult_shamir(&cc, z1, &ctx->curve->g, z2, &ctx->pub_key,
+ ctx->curve);
+ if (vli_cmp(cc.x, ctx->curve->n, ndigits) == 1)
+ vli_sub(cc.x, cc.x, ctx->curve->n, ndigits);
+
+ /* Step 7: if R == r signature is valid */
+ if (!vli_cmp(cc.x, r, ndigits))
+ return 0;
+ else
+ return -EKEYREJECTED;
+}
+
+int ecrdsa_param_curve(void *context, size_t hdrlen, unsigned char tag,
+ const void *value, size_t vlen)
+{
+ struct ecrdsa_ctx *ctx = context;
+
+ ctx->curve_oid = look_up_OID(value, vlen);
+ if (!ctx->curve_oid)
+ return -EINVAL;
+ ctx->curve = get_curve_by_oid(ctx->curve_oid);
+ return 0;
+}
+
+/* Optional. If present should match expected digest algo OID. */
+int ecrdsa_param_digest(void *context, size_t hdrlen, unsigned char tag,
+ const void *value, size_t vlen)
+{
+ struct ecrdsa_ctx *ctx = context;
+ int digest_oid = look_up_OID(value, vlen);
+
+ if (digest_oid != ctx->digest_oid)
+ return -EINVAL;
+ return 0;
+}
+
+int ecrdsa_parse_pub_key(void *context, size_t hdrlen, unsigned char tag,
+ const void *value, size_t vlen)
+{
+ struct ecrdsa_ctx *ctx = context;
+
+ ctx->key = value;
+ ctx->key_len = vlen;
+ return 0;
+}
+
+static u8 *ecrdsa_unpack_u32(u32 *dst, void *src)
+{
+ memcpy(dst, src, sizeof(u32));
+ return src + sizeof(u32);
+}
+
+/* Parse BER encoded subjectPublicKey. */
+static int ecrdsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
+ unsigned int keylen)
+{
+ struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm);
+ unsigned int ndigits;
+ u32 algo, paramlen;
+ u8 *params;
+ int err;
+
+ err = asn1_ber_decoder(&ecrdsa_pub_key_decoder, ctx, key, keylen);
+ if (err < 0)
+ return err;
+
+ /* Key parameters is in the key after keylen. */
+ params = ecrdsa_unpack_u32(¶mlen,
+ ecrdsa_unpack_u32(&algo, (u8 *)key + keylen));
+
+ if (algo == OID_gost2012PKey256) {
+ ctx->digest = "streebog256";
+ ctx->digest_oid = OID_gost2012Digest256;
+ ctx->digest_len = 256 / 8;
+ } else if (algo == OID_gost2012PKey512) {
+ ctx->digest = "streebog512";
+ ctx->digest_oid = OID_gost2012Digest512;
+ ctx->digest_len = 512 / 8;
+ } else
+ return -ENOPKG;
+ ctx->algo_oid = algo;
+
+ /* Parse SubjectPublicKeyInfo.AlgorithmIdentifier.parameters. */
+ err = asn1_ber_decoder(&ecrdsa_params_decoder, ctx, params, paramlen);
+ if (err < 0)
+ return err;
+ /*
+ * Sizes of algo (set in digest_len) and curve should match
+ * each other.
+ */
+ if (!ctx->curve ||
+ ctx->curve->g.ndigits * sizeof(u64) != ctx->digest_len)
+ return -ENOPKG;
+ /*
+ * Key is two 256- or 512-bit coordinates which should match
+ * curve size.
+ */
+ if ((ctx->key_len != (2 * 256 / 8) &&
+ ctx->key_len != (2 * 512 / 8)) ||
+ ctx->key_len != ctx->curve->g.ndigits * sizeof(u64) * 2)
+ return -ENOPKG;
+
+ ndigits = ctx->key_len / sizeof(u64) / 2;
+ ctx->pub_key = ECC_POINT_INIT(ctx->_pubp[0], ctx->_pubp[1], ndigits);
+ vli_from_le64(ctx->pub_key.x, ctx->key, ndigits);
+ vli_from_le64(ctx->pub_key.y, ctx->key + ndigits * sizeof(u64),
+ ndigits);
+
+ if (ecc_is_pubkey_valid_partial(ctx->curve, &ctx->pub_key))
+ return -EKEYREJECTED;
+
+ return 0;
+}
+
+static unsigned int ecrdsa_max_size(struct crypto_akcipher *tfm)
+{
+ struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm);
+
+ /*
+ * Verify doesn't need any output, so it's just informational
+ * for keyctl to determine the key bit size.
+ */
+ return ctx->pub_key.ndigits * sizeof(u64);
+}
+
+static void ecrdsa_exit_tfm(struct crypto_akcipher *tfm)
+{
+}
+
+static struct akcipher_alg ecrdsa_alg = {
+ .verify = ecrdsa_verify,
+ .set_pub_key = ecrdsa_set_pub_key,
+ .max_size = ecrdsa_max_size,
+ .exit = ecrdsa_exit_tfm,
+ .base = {
+ .cra_name = "ecrdsa",
+ .cra_driver_name = "ecrdsa-generic",
+ .cra_priority = 100,
+ .cra_module = THIS_MODULE,
+ .cra_ctxsize = sizeof(struct ecrdsa_ctx),
+ },
+};
+
+static int __init ecrdsa_mod_init(void)
+{
+ return crypto_register_akcipher(&ecrdsa_alg);
+}
+
+static void __exit ecrdsa_mod_fini(void)
+{
+ crypto_unregister_akcipher(&ecrdsa_alg);
+}
+
+module_init(ecrdsa_mod_init);
+module_exit(ecrdsa_mod_fini);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Vitaly Chikunov <vt@altlinux.org>");
+MODULE_DESCRIPTION("EC-RDSA generic algorithm");
+MODULE_ALIAS_CRYPTO("ecrdsa-generic");
--- /dev/null
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Definitions of EC-RDSA Curve Parameters
+ *
+ * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the Free
+ * Software Foundation; either version 2 of the License, or (at your option)
+ * any later version.
+ */
+
+#ifndef _CRYTO_ECRDSA_DEFS_H
+#define _CRYTO_ECRDSA_DEFS_H
+
+#include "ecc.h"
+
+#define ECRDSA_MAX_SIG_SIZE (2 * 512 / 8)
+#define ECRDSA_MAX_DIGITS (512 / 64)
+
+/*
+ * EC-RDSA uses its own set of curves.
+ *
+ * cp256{a,b,c} curves first defined for GOST R 34.10-2001 in RFC 4357 (as
+ * 256-bit {A,B,C}-ParamSet), but inherited for GOST R 34.10-2012 and
+ * proposed for use in R 50.1.114-2016 and RFC 7836 as the 256-bit curves.
+ */
+/* OID_gostCPSignA 1.2.643.2.2.35.1 */
+static u64 cp256a_g_x[] = {
+ 0x0000000000000001ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull, };
+static u64 cp256a_g_y[] = {
+ 0x22ACC99C9E9F1E14ull, 0x35294F2DDF23E3B1ull,
+ 0x27DF505A453F2B76ull, 0x8D91E471E0989CDAull, };
+static u64 cp256a_p[] = { /* p = 2^256 - 617 */
+ 0xFFFFFFFFFFFFFD97ull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull };
+static u64 cp256a_n[] = {
+ 0x45841B09B761B893ull, 0x6C611070995AD100ull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull };
+static u64 cp256a_a[] = { /* a = p - 3 */
+ 0xFFFFFFFFFFFFFD94ull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull };
+static u64 cp256a_b[] = {
+ 0x00000000000000a6ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull };
+
+static struct ecc_curve gost_cp256a = {
+ .name = "cp256a",
+ .g = {
+ .x = cp256a_g_x,
+ .y = cp256a_g_y,
+ .ndigits = 256 / 64,
+ },
+ .p = cp256a_p,
+ .n = cp256a_n,
+ .a = cp256a_a,
+ .b = cp256a_b
+};
+
+/* OID_gostCPSignB 1.2.643.2.2.35.2 */
+static u64 cp256b_g_x[] = {
+ 0x0000000000000001ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull, };
+static u64 cp256b_g_y[] = {
+ 0x744BF8D717717EFCull, 0xC545C9858D03ECFBull,
+ 0xB83D1C3EB2C070E5ull, 0x3FA8124359F96680ull, };
+static u64 cp256b_p[] = { /* p = 2^255 + 3225 */
+ 0x0000000000000C99ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x8000000000000000ull, };
+static u64 cp256b_n[] = {
+ 0xE497161BCC8A198Full, 0x5F700CFFF1A624E5ull,
+ 0x0000000000000001ull, 0x8000000000000000ull, };
+static u64 cp256b_a[] = { /* a = p - 3 */
+ 0x0000000000000C96ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x8000000000000000ull, };
+static u64 cp256b_b[] = {
+ 0x2F49D4CE7E1BBC8Bull, 0xE979259373FF2B18ull,
+ 0x66A7D3C25C3DF80Aull, 0x3E1AF419A269A5F8ull, };
+
+static struct ecc_curve gost_cp256b = {
+ .name = "cp256b",
+ .g = {
+ .x = cp256b_g_x,
+ .y = cp256b_g_y,
+ .ndigits = 256 / 64,
+ },
+ .p = cp256b_p,
+ .n = cp256b_n,
+ .a = cp256b_a,
+ .b = cp256b_b
+};
+
+/* OID_gostCPSignC 1.2.643.2.2.35.3 */
+static u64 cp256c_g_x[] = {
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull, };
+static u64 cp256c_g_y[] = {
+ 0x366E550DFDB3BB67ull, 0x4D4DC440D4641A8Full,
+ 0x3CBF3783CD08C0EEull, 0x41ECE55743711A8Cull, };
+static u64 cp256c_p[] = {
+ 0x7998F7B9022D759Bull, 0xCF846E86789051D3ull,
+ 0xAB1EC85E6B41C8AAull, 0x9B9F605F5A858107ull,
+ /* pre-computed value for Barrett's reduction */
+ 0xedc283cdd217b5a2ull, 0xbac48fc06398ae59ull,
+ 0x405384d55f9f3b73ull, 0xa51f176161f1d734ull,
+ 0x0000000000000001ull, };
+static u64 cp256c_n[] = {
+ 0xF02F3A6598980BB9ull, 0x582CA3511EDDFB74ull,
+ 0xAB1EC85E6B41C8AAull, 0x9B9F605F5A858107ull, };
+static u64 cp256c_a[] = { /* a = p - 3 */
+ 0x7998F7B9022D7598ull, 0xCF846E86789051D3ull,
+ 0xAB1EC85E6B41C8AAull, 0x9B9F605F5A858107ull, };
+static u64 cp256c_b[] = {
+ 0x000000000000805aull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull, };
+
+static struct ecc_curve gost_cp256c = {
+ .name = "cp256c",
+ .g = {
+ .x = cp256c_g_x,
+ .y = cp256c_g_y,
+ .ndigits = 256 / 64,
+ },
+ .p = cp256c_p,
+ .n = cp256c_n,
+ .a = cp256c_a,
+ .b = cp256c_b
+};
+
+/* tc512{a,b} curves first recommended in 2013 and then standardized in
+ * R 50.1.114-2016 and RFC 7836 for use with GOST R 34.10-2012 (as TC26
+ * 512-bit ParamSet{A,B}).
+ */
+/* OID_gostTC26Sign512A 1.2.643.7.1.2.1.2.1 */
+static u64 tc512a_g_x[] = {
+ 0x0000000000000003ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull, };
+static u64 tc512a_g_y[] = {
+ 0x89A589CB5215F2A4ull, 0x8028FE5FC235F5B8ull,
+ 0x3D75E6A50E3A41E9ull, 0xDF1626BE4FD036E9ull,
+ 0x778064FDCBEFA921ull, 0xCE5E1C93ACF1ABC1ull,
+ 0xA61B8816E25450E6ull, 0x7503CFE87A836AE3ull, };
+static u64 tc512a_p[] = { /* p = 2^512 - 569 */
+ 0xFFFFFFFFFFFFFDC7ull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, };
+static u64 tc512a_n[] = {
+ 0xCACDB1411F10B275ull, 0x9B4B38ABFAD2B85Dull,
+ 0x6FF22B8D4E056060ull, 0x27E69532F48D8911ull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, };
+static u64 tc512a_a[] = { /* a = p - 3 */
+ 0xFFFFFFFFFFFFFDC4ull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull,
+ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, };
+static u64 tc512a_b[] = {
+ 0x503190785A71C760ull, 0x862EF9D4EBEE4761ull,
+ 0x4CB4574010DA90DDull, 0xEE3CB090F30D2761ull,
+ 0x79BD081CFD0B6265ull, 0x34B82574761CB0E8ull,
+ 0xC1BD0B2B6667F1DAull, 0xE8C2505DEDFC86DDull, };
+
+static struct ecc_curve gost_tc512a = {
+ .name = "tc512a",
+ .g = {
+ .x = tc512a_g_x,
+ .y = tc512a_g_y,
+ .ndigits = 512 / 64,
+ },
+ .p = tc512a_p,
+ .n = tc512a_n,
+ .a = tc512a_a,
+ .b = tc512a_b
+};
+
+/* OID_gostTC26Sign512B 1.2.643.7.1.2.1.2.2 */
+static u64 tc512b_g_x[] = {
+ 0x0000000000000002ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull, };
+static u64 tc512b_g_y[] = {
+ 0x7E21340780FE41BDull, 0x28041055F94CEEECull,
+ 0x152CBCAAF8C03988ull, 0xDCB228FD1EDF4A39ull,
+ 0xBE6DD9E6C8EC7335ull, 0x3C123B697578C213ull,
+ 0x2C071E3647A8940Full, 0x1A8F7EDA389B094Cull, };
+static u64 tc512b_p[] = { /* p = 2^511 + 111 */
+ 0x000000000000006Full, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x8000000000000000ull, };
+static u64 tc512b_n[] = {
+ 0xC6346C54374F25BDull, 0x8B996712101BEA0Eull,
+ 0xACFDB77BD9D40CFAull, 0x49A1EC142565A545ull,
+ 0x0000000000000001ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x8000000000000000ull, };
+static u64 tc512b_a[] = { /* a = p - 3 */
+ 0x000000000000006Cull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x0000000000000000ull,
+ 0x0000000000000000ull, 0x8000000000000000ull, };
+static u64 tc512b_b[] = {
+ 0xFB8CCBC7C5140116ull, 0x50F78BEE1FA3106Eull,
+ 0x7F8B276FAD1AB69Cull, 0x3E965D2DB1416D21ull,
+ 0xBF85DC806C4B289Full, 0xB97C7D614AF138BCull,
+ 0x7E3E06CF6F5E2517ull, 0x687D1B459DC84145ull, };
+
+static struct ecc_curve gost_tc512b = {
+ .name = "tc512b",
+ .g = {
+ .x = tc512b_g_x,
+ .y = tc512b_g_y,
+ .ndigits = 512 / 64,
+ },
+ .p = tc512b_p,
+ .n = tc512b_n,
+ .a = tc512b_a,
+ .b = tc512b_b
+};
+
+#endif
--- /dev/null
+EcrdsaParams ::= SEQUENCE {
+ curve OBJECT IDENTIFIER ({ ecrdsa_param_curve }),
+ digest OBJECT IDENTIFIER OPTIONAL ({ ecrdsa_param_digest })
+}
--- /dev/null
+EcrdsaPubKey ::= OCTET STRING ({ ecrdsa_parse_pub_key })
OID_authorityKeyIdentifier, /* 2.5.29.35 */
OID_extKeyUsage, /* 2.5.29.37 */
+ /* EC-RDSA */
+ OID_gostCPSignA, /* 1.2.643.2.2.35.1 */
+ OID_gostCPSignB, /* 1.2.643.2.2.35.2 */
+ OID_gostCPSignC, /* 1.2.643.2.2.35.3 */
+ OID_gost2012PKey256, /* 1.2.643.7.1.1.1.1 */
+ OID_gost2012PKey512, /* 1.2.643.7.1.1.1.2 */
+ OID_gost2012Digest256, /* 1.2.643.7.1.1.2.2 */
+ OID_gost2012Digest512, /* 1.2.643.7.1.1.2.3 */
+ OID_gost2012Signature256, /* 1.2.643.7.1.1.3.2 */
+ OID_gost2012Signature512, /* 1.2.643.7.1.1.3.3 */
+ OID_gostTC26Sign256A, /* 1.2.643.7.1.2.1.1.1 */
+ OID_gostTC26Sign256B, /* 1.2.643.7.1.2.1.1.2 */
+ OID_gostTC26Sign256C, /* 1.2.643.7.1.2.1.1.3 */
+ OID_gostTC26Sign256D, /* 1.2.643.7.1.2.1.1.4 */
+ OID_gostTC26Sign512A, /* 1.2.643.7.1.2.1.2.1 */
+ OID_gostTC26Sign512B, /* 1.2.643.7.1.2.1.2.2 */
+ OID_gostTC26Sign512C, /* 1.2.643.7.1.2.1.2.3 */
+
OID__NR
};