__xfs_iunpin_wait(ip);
}
+/*
+ * Removing an inode from the namespace involves removing the directory entry
+ * and dropping the link count on the inode. Removing the directory entry can
+ * result in locking an AGF (directory blocks were freed) and removing a link
+ * count can result in placing the inode on an unlinked list which results in
+ * locking an AGI.
+ *
+ * The big problem here is that we have an ordering constraint on AGF and AGI
+ * locking - inode allocation locks the AGI, then can allocate a new extent for
+ * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
+ * removes the inode from the unlinked list, requiring that we lock the AGI
+ * first, and then freeing the inode can result in an inode chunk being freed
+ * and hence freeing disk space requiring that we lock an AGF.
+ *
+ * Hence the ordering that is imposed by other parts of the code is AGI before
+ * AGF. This means we cannot remove the directory entry before we drop the inode
+ * reference count and put it on the unlinked list as this results in a lock
+ * order of AGF then AGI, and this can deadlock against inode allocation and
+ * freeing. Therefore we must drop the link counts before we remove the
+ * directory entry.
+ *
+ * This is still safe from a transactional point of view - it is not until we
+ * get to xfs_bmap_finish() that we have the possibility of multiple
+ * transactions in this operation. Hence as long as we remove the directory
+ * entry and drop the link count in the first transaction of the remove
+ * operation, there are no transactional constraints on the ordering here.
+ */
int
xfs_remove(
xfs_inode_t *dp,
/*
* If we're removing a directory perform some additional validation.
*/
+ cancel_flags |= XFS_TRANS_ABORT;
if (is_dir) {
ASSERT(ip->i_d.di_nlink >= 2);
if (ip->i_d.di_nlink != 2) {
error = XFS_ERROR(ENOTEMPTY);
goto out_trans_cancel;
}
- }
- xfs_bmap_init(&free_list, &first_block);
- error = xfs_dir_removename(tp, dp, name, ip->i_ino,
- &first_block, &free_list, resblks);
- if (error) {
- ASSERT(error != ENOENT);
- goto out_bmap_cancel;
- }
- xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
-
- if (is_dir) {
- /*
- * Drop the link from ip's "..".
- */
+ /* Drop the link from ip's "..". */
error = xfs_droplink(tp, dp);
if (error)
- goto out_bmap_cancel;
+ goto out_trans_cancel;
- /*
- * Drop the "." link from ip to self.
- */
+ /* Drop the "." link from ip to self. */
error = xfs_droplink(tp, ip);
if (error)
- goto out_bmap_cancel;
+ goto out_trans_cancel;
} else {
/*
* When removing a non-directory we need to log the parent
*/
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
}
+ xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
- /*
- * Drop the link from dp to ip.
- */
+ /* Drop the link from dp to ip. */
error = xfs_droplink(tp, ip);
if (error)
- goto out_bmap_cancel;
+ goto out_trans_cancel;
- /*
- * Determine if this is the last link while
- * we are in the transaction.
- */
+ /* Determine if this is the last link while the inode is locked */
link_zero = (ip->i_d.di_nlink == 0);
+ xfs_bmap_init(&free_list, &first_block);
+ error = xfs_dir_removename(tp, dp, name, ip->i_ino,
+ &first_block, &free_list, resblks);
+ if (error) {
+ ASSERT(error != ENOENT);
+ goto out_bmap_cancel;
+ }
+
/*
* If this is a synchronous mount, make sure that the
* remove transaction goes to disk before returning to
out_bmap_cancel:
xfs_bmap_cancel(&free_list);
- cancel_flags |= XFS_TRANS_ABORT;
out_trans_cancel:
xfs_trans_cancel(tp, cancel_flags);
std_return: