/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT 1
+/*
+ * set when this rbio is sitting in the hash, but it is just a cache
+ * of past RMW
+ */
+#define RBIO_CACHE_BIT 2
+
+/*
+ * set when it is safe to trust the stripe_pages for caching
+ */
+#define RBIO_CACHE_READY_BIT 3
+
+
+#define RBIO_CACHE_SIZE 1024
+
struct btrfs_raid_bio {
struct btrfs_fs_info *fs_info;
struct btrfs_bio *bbio;
*/
struct list_head hash_list;
+ /*
+ * LRU list for the stripe cache
+ */
+ struct list_head stripe_cache;
+
/*
* for scheduling work in the helper threads
*/
if (!table)
return -ENOMEM;
- table->table = (void *)(table + 1);
+ spin_lock_init(&table->cache_lock);
+ INIT_LIST_HEAD(&table->stripe_cache);
+
h = table->table;
for (i = 0; i < num_entries; i++) {
return 0;
}
+/*
+ * caching an rbio means to copy anything from the
+ * bio_pages array into the stripe_pages array. We
+ * use the page uptodate bit in the stripe cache array
+ * to indicate if it has valid data
+ *
+ * once the caching is done, we set the cache ready
+ * bit.
+ */
+static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
+{
+ int i;
+ char *s;
+ char *d;
+ int ret;
+
+ ret = alloc_rbio_pages(rbio);
+ if (ret)
+ return;
+
+ for (i = 0; i < rbio->nr_pages; i++) {
+ if (!rbio->bio_pages[i])
+ continue;
+
+ s = kmap(rbio->bio_pages[i]);
+ d = kmap(rbio->stripe_pages[i]);
+
+ memcpy(d, s, PAGE_CACHE_SIZE);
+
+ kunmap(rbio->bio_pages[i]);
+ kunmap(rbio->stripe_pages[i]);
+ SetPageUptodate(rbio->stripe_pages[i]);
+ }
+ set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
+}
+
/*
* we hash on the first logical address of the stripe
*/
return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}
+/*
+ * stealing an rbio means taking all the uptodate pages from the stripe
+ * array in the source rbio and putting them into the destination rbio
+ */
+static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
+{
+ int i;
+ struct page *s;
+ struct page *d;
+
+ if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
+ return;
+
+ for (i = 0; i < dest->nr_pages; i++) {
+ s = src->stripe_pages[i];
+ if (!s || !PageUptodate(s)) {
+ continue;
+ }
+
+ d = dest->stripe_pages[i];
+ if (d)
+ __free_page(d);
+
+ dest->stripe_pages[i] = s;
+ src->stripe_pages[i] = NULL;
+ }
+}
+
/*
* merging means we take the bio_list from the victim and
* splice it into the destination. The victim should
}
/*
- * free the hash table used by unmount
+ * used to prune items that are in the cache. The caller
+ * must hold the hash table lock.
+ */
+static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
+{
+ int bucket = rbio_bucket(rbio);
+ struct btrfs_stripe_hash_table *table;
+ struct btrfs_stripe_hash *h;
+ int freeit = 0;
+
+ /*
+ * check the bit again under the hash table lock.
+ */
+ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
+ return;
+
+ table = rbio->fs_info->stripe_hash_table;
+ h = table->table + bucket;
+
+ /* hold the lock for the bucket because we may be
+ * removing it from the hash table
+ */
+ spin_lock(&h->lock);
+
+ /*
+ * hold the lock for the bio list because we need
+ * to make sure the bio list is empty
+ */
+ spin_lock(&rbio->bio_list_lock);
+
+ if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
+ list_del_init(&rbio->stripe_cache);
+ table->cache_size -= 1;
+ freeit = 1;
+
+ /* if the bio list isn't empty, this rbio is
+ * still involved in an IO. We take it out
+ * of the cache list, and drop the ref that
+ * was held for the list.
+ *
+ * If the bio_list was empty, we also remove
+ * the rbio from the hash_table, and drop
+ * the corresponding ref
+ */
+ if (bio_list_empty(&rbio->bio_list)) {
+ if (!list_empty(&rbio->hash_list)) {
+ list_del_init(&rbio->hash_list);
+ atomic_dec(&rbio->refs);
+ BUG_ON(!list_empty(&rbio->plug_list));
+ }
+ }
+ }
+
+ spin_unlock(&rbio->bio_list_lock);
+ spin_unlock(&h->lock);
+
+ if (freeit)
+ __free_raid_bio(rbio);
+}
+
+/*
+ * prune a given rbio from the cache
+ */
+static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
+{
+ struct btrfs_stripe_hash_table *table;
+ unsigned long flags;
+
+ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
+ return;
+
+ table = rbio->fs_info->stripe_hash_table;
+
+ spin_lock_irqsave(&table->cache_lock, flags);
+ __remove_rbio_from_cache(rbio);
+ spin_unlock_irqrestore(&table->cache_lock, flags);
+}
+
+/*
+ * remove everything in the cache
+ */
+void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
+{
+ struct btrfs_stripe_hash_table *table;
+ unsigned long flags;
+ struct btrfs_raid_bio *rbio;
+
+ table = info->stripe_hash_table;
+
+ spin_lock_irqsave(&table->cache_lock, flags);
+ while (!list_empty(&table->stripe_cache)) {
+ rbio = list_entry(table->stripe_cache.next,
+ struct btrfs_raid_bio,
+ stripe_cache);
+ __remove_rbio_from_cache(rbio);
+ }
+ spin_unlock_irqrestore(&table->cache_lock, flags);
+}
+
+/*
+ * remove all cached entries and free the hash table
+ * used by unmount
*/
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
if (!info->stripe_hash_table)
return;
+ btrfs_clear_rbio_cache(info);
kfree(info->stripe_hash_table);
info->stripe_hash_table = NULL;
}
+/*
+ * insert an rbio into the stripe cache. It
+ * must have already been prepared by calling
+ * cache_rbio_pages
+ *
+ * If this rbio was already cached, it gets
+ * moved to the front of the lru.
+ *
+ * If the size of the rbio cache is too big, we
+ * prune an item.
+ */
+static void cache_rbio(struct btrfs_raid_bio *rbio)
+{
+ struct btrfs_stripe_hash_table *table;
+ unsigned long flags;
+
+ if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
+ return;
+
+ table = rbio->fs_info->stripe_hash_table;
+
+ spin_lock_irqsave(&table->cache_lock, flags);
+ spin_lock(&rbio->bio_list_lock);
+
+ /* bump our ref if we were not in the list before */
+ if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
+ atomic_inc(&rbio->refs);
+
+ if (!list_empty(&rbio->stripe_cache)){
+ list_move(&rbio->stripe_cache, &table->stripe_cache);
+ } else {
+ list_add(&rbio->stripe_cache, &table->stripe_cache);
+ table->cache_size += 1;
+ }
+
+ spin_unlock(&rbio->bio_list_lock);
+
+ if (table->cache_size > RBIO_CACHE_SIZE) {
+ struct btrfs_raid_bio *found;
+
+ found = list_entry(table->stripe_cache.prev,
+ struct btrfs_raid_bio,
+ stripe_cache);
+
+ if (found != rbio)
+ __remove_rbio_from_cache(found);
+ }
+
+ spin_unlock_irqrestore(&table->cache_lock, flags);
+ return;
+}
+
/*
* helper function to run the xor_blocks api. It is only
* able to do MAX_XOR_BLOCKS at a time, so we need to
test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
return 0;
+ /*
+ * we can't merge with cached rbios, since the
+ * idea is that when we merge the destination
+ * rbio is going to run our IO for us. We can
+ * steal from cached rbio's though, other functions
+ * handle that.
+ */
+ if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
+ test_bit(RBIO_CACHE_BIT, &cur->flags))
+ return 0;
+
if (last->raid_map[0] !=
cur->raid_map[0])
return 0;
unsigned long flags;
DEFINE_WAIT(wait);
struct btrfs_raid_bio *freeit = NULL;
+ struct btrfs_raid_bio *cache_drop = NULL;
int ret = 0;
int walk = 0;
if (cur->raid_map[0] == rbio->raid_map[0]) {
spin_lock(&cur->bio_list_lock);
+ /* can we steal this cached rbio's pages? */
+ if (bio_list_empty(&cur->bio_list) &&
+ list_empty(&cur->plug_list) &&
+ test_bit(RBIO_CACHE_BIT, &cur->flags) &&
+ !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
+ list_del_init(&cur->hash_list);
+ atomic_dec(&cur->refs);
+
+ steal_rbio(cur, rbio);
+ cache_drop = cur;
+ spin_unlock(&cur->bio_list_lock);
+
+ goto lockit;
+ }
+
/* can we merge into the lock owner? */
if (rbio_can_merge(cur, rbio)) {
merge_rbio(cur, rbio);
goto out;
}
+
/*
* we couldn't merge with the running
* rbio, see if we can merge with the
goto out;
}
}
-
+lockit:
atomic_inc(&rbio->refs);
list_add(&rbio->hash_list, &h->hash_list);
out:
spin_unlock_irqrestore(&h->lock, flags);
+ if (cache_drop)
+ remove_rbio_from_cache(cache_drop);
if (freeit)
__free_raid_bio(freeit);
return ret;
int bucket;
struct btrfs_stripe_hash *h;
unsigned long flags;
+ int keep_cache = 0;
bucket = rbio_bucket(rbio);
h = rbio->fs_info->stripe_hash_table->table + bucket;
+ if (list_empty(&rbio->plug_list))
+ cache_rbio(rbio);
+
spin_lock_irqsave(&h->lock, flags);
spin_lock(&rbio->bio_list_lock);
if (!list_empty(&rbio->hash_list)) {
+ /*
+ * if we're still cached and there is no other IO
+ * to perform, just leave this rbio here for others
+ * to steal from later
+ */
+ if (list_empty(&rbio->plug_list) &&
+ test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
+ keep_cache = 1;
+ clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
+ BUG_ON(!bio_list_empty(&rbio->bio_list));
+ goto done;
+ }
list_del_init(&rbio->hash_list);
atomic_dec(&rbio->refs);
if (next->read_rebuild)
async_read_rebuild(next);
- else
+ else {
+ steal_rbio(rbio, next);
async_rmw_stripe(next);
+ }
goto done_nolock;
-
} else if (waitqueue_active(&h->wait)) {
spin_unlock(&rbio->bio_list_lock);
spin_unlock_irqrestore(&h->lock, flags);
goto done_nolock;
}
}
+done:
spin_unlock(&rbio->bio_list_lock);
spin_unlock_irqrestore(&h->lock, flags);
done_nolock:
- return;
+ if (!keep_cache)
+ remove_rbio_from_cache(rbio);
}
static void __free_raid_bio(struct btrfs_raid_bio *rbio)
if (!atomic_dec_and_test(&rbio->refs))
return;
+ WARN_ON(!list_empty(&rbio->stripe_cache));
WARN_ON(!list_empty(&rbio->hash_list));
WARN_ON(!bio_list_empty(&rbio->bio_list));
bio_list_init(&rbio->bio_list);
INIT_LIST_HEAD(&rbio->plug_list);
spin_lock_init(&rbio->bio_list_lock);
+ INIT_LIST_HEAD(&rbio->stripe_cache);
INIT_LIST_HEAD(&rbio->hash_list);
rbio->bbio = bbio;
rbio->raid_map = raid_map;
/*
* now that we've set rmw_locked, run through the
* bio list one last time and map the page pointers
+ *
+ * We don't cache full rbios because we're assuming
+ * the higher layers are unlikely to use this area of
+ * the disk again soon. If they do use it again,
+ * hopefully they will send another full bio.
*/
index_rbio_pages(rbio);
+ if (!rbio_is_full(rbio))
+ cache_rbio_pages(rbio);
+ else
+ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
struct page *p;
continue;
page = rbio_stripe_page(rbio, stripe, pagenr);
+ /*
+ * the bio cache may have handed us an uptodate
+ * page. If so, be happy and use it
+ */
+ if (PageUptodate(page))
+ continue;
+
ret = rbio_add_io_page(rbio, &bio_list, page,
stripe, pagenr, rbio->stripe_len);
if (ret)
cleanup_io:
if (rbio->read_rebuild) {
+ if (err == 0)
+ cache_rbio_pages(rbio);
+ else
+ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
+
rbio_orig_end_io(rbio, err, err == 0);
} else if (err == 0) {
rbio->faila = -1;
atomic_set(&rbio->bbio->error, 0);
/*
- * read everything that hasn't failed.
+ * read everything that hasn't failed. Thanks to the
+ * stripe cache, it is possible that some or all of these
+ * pages are going to be uptodate.
*/
for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
if (rbio->faila == stripe ||