EDAC, skx_edac: Add EDAC driver for Skylake
authorTony Luck <tony.luck@intel.com>
Sat, 20 Aug 2016 23:27:58 +0000 (16:27 -0700)
committerLinus Torvalds <torvalds@linux-foundation.org>
Sun, 21 Aug 2016 17:58:34 +0000 (10:58 -0700)
This is an entirely new driver instead of yet another set of patches
to sb_edac.c because:

1) Mapping from PCI devices to socket/memory controller is significantly
   different. Skylake scatters devices on a socket across a number of
   PCI buses.
2) There is an extra level of interleaving via the "mcroute" register
   that would be a little messy to squeeze into the old driver.
3) Validation is getting too expensive. Changes to sb_edac need to
   be checked against Sandy Bridge, Ivy Bridge, Haswell, Broadwell and
   Knights Landing.

Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MAINTAINERS
drivers/edac/Kconfig
drivers/edac/Makefile
drivers/edac/skx_edac.c [new file with mode: 0644]

index a306795a7450637be47bcec981c18776d513deaa..0bbe4b105c346893db530be25031ab8ce0350b56 100644 (file)
@@ -4525,6 +4525,12 @@ L:       linux-edac@vger.kernel.org
 S:     Maintained
 F:     drivers/edac/sb_edac.c
 
+EDAC-SKYLAKE
+M:     Tony Luck <tony.luck@intel.com>
+L:     linux-edac@vger.kernel.org
+S:     Maintained
+F:     drivers/edac/skx_edac.c
+
 EDAC-XGENE
 APPLIED MICRO (APM) X-GENE SOC EDAC
 M:     Loc Ho <lho@apm.com>
index d0c1dab9b435480bef9d6c61f42cac9dbea0107f..dff1a4a6dc1b5cd63df8071564e3606c4305e44e 100644 (file)
@@ -251,6 +251,14 @@ config EDAC_SBRIDGE
          Support for error detection and correction the Intel
          Sandy Bridge, Ivy Bridge and Haswell Integrated Memory Controllers.
 
+config EDAC_SKX
+       tristate "Intel Skylake server Integrated MC"
+       depends on EDAC_MM_EDAC && PCI && X86_64 && X86_MCE_INTEL
+       depends on PCI_MMCONFIG
+       help
+         Support for error detection and correction the Intel
+         Skylake server Integrated Memory Controllers.
+
 config EDAC_MPC85XX
        tristate "Freescale MPC83xx / MPC85xx"
        depends on EDAC_MM_EDAC && FSL_SOC
index f9e4a3e0e6e915d1b5b6217e76e4f7f52323656c..986049925b08569d45692d3e0d0b16e6394363c4 100644 (file)
@@ -31,6 +31,7 @@ obj-$(CONFIG_EDAC_I5400)              += i5400_edac.o
 obj-$(CONFIG_EDAC_I7300)               += i7300_edac.o
 obj-$(CONFIG_EDAC_I7CORE)              += i7core_edac.o
 obj-$(CONFIG_EDAC_SBRIDGE)             += sb_edac.o
+obj-$(CONFIG_EDAC_SKX)                 += skx_edac.o
 obj-$(CONFIG_EDAC_E7XXX)               += e7xxx_edac.o
 obj-$(CONFIG_EDAC_E752X)               += e752x_edac.o
 obj-$(CONFIG_EDAC_I82443BXGX)          += i82443bxgx_edac.o
diff --git a/drivers/edac/skx_edac.c b/drivers/edac/skx_edac.c
new file mode 100644 (file)
index 0000000..0ff4878
--- /dev/null
@@ -0,0 +1,1121 @@
+/*
+ * EDAC driver for Intel(R) Xeon(R) Skylake processors
+ * Copyright (c) 2016, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/edac.h>
+#include <linux/mmzone.h>
+#include <linux/smp.h>
+#include <linux/bitmap.h>
+#include <linux/math64.h>
+#include <linux/mod_devicetable.h>
+#include <asm/cpu_device_id.h>
+#include <asm/processor.h>
+#include <asm/mce.h>
+
+#include "edac_core.h"
+
+#define SKX_REVISION    " Ver: 1.0 "
+
+/*
+ * Debug macros
+ */
+#define skx_printk(level, fmt, arg...)                 \
+       edac_printk(level, "skx", fmt, ##arg)
+
+#define skx_mc_printk(mci, level, fmt, arg...)         \
+       edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
+
+/*
+ * Get a bit field at register value <v>, from bit <lo> to bit <hi>
+ */
+#define GET_BITFIELD(v, lo, hi) \
+       (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
+
+static LIST_HEAD(skx_edac_list);
+
+static u64 skx_tolm, skx_tohm;
+
+#define NUM_IMC                        2       /* memory controllers per socket */
+#define NUM_CHANNELS           3       /* channels per memory controller */
+#define NUM_DIMMS              2       /* Max DIMMS per channel */
+
+#define        MASK26  0x3FFFFFF               /* Mask for 2^26 */
+#define MASK29 0x1FFFFFFF              /* Mask for 2^29 */
+
+/*
+ * Each cpu socket contains some pci devices that provide global
+ * information, and also some that are local to each of the two
+ * memory controllers on the die.
+ */
+struct skx_dev {
+       struct list_head        list;
+       u8                      bus[4];
+       struct pci_dev  *sad_all;
+       struct pci_dev  *util_all;
+       u32     mcroute;
+       struct skx_imc {
+               struct mem_ctl_info *mci;
+               u8      mc;     /* system wide mc# */
+               u8      lmc;    /* socket relative mc# */
+               u8      src_id, node_id;
+               struct skx_channel {
+                       struct pci_dev *cdev;
+                       struct skx_dimm {
+                               u8      close_pg;
+                               u8      bank_xor_enable;
+                               u8      fine_grain_bank;
+                               u8      rowbits;
+                               u8      colbits;
+                       } dimms[NUM_DIMMS];
+               } chan[NUM_CHANNELS];
+       } imc[NUM_IMC];
+};
+static int skx_num_sockets;
+
+struct skx_pvt {
+       struct skx_imc  *imc;
+};
+
+struct decoded_addr {
+       struct skx_dev *dev;
+       u64     addr;
+       int     socket;
+       int     imc;
+       int     channel;
+       u64     chan_addr;
+       int     sktways;
+       int     chanways;
+       int     dimm;
+       int     rank;
+       int     channel_rank;
+       u64     rank_address;
+       int     row;
+       int     column;
+       int     bank_address;
+       int     bank_group;
+};
+
+static struct skx_dev *get_skx_dev(u8 bus, u8 idx)
+{
+       struct skx_dev *d;
+
+       list_for_each_entry(d, &skx_edac_list, list) {
+               if (d->bus[idx] == bus)
+                       return d;
+       }
+
+       return NULL;
+}
+
+enum munittype {
+       CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
+};
+
+struct munit {
+       u16     did;
+       u16     devfn[NUM_IMC];
+       u8      busidx;
+       u8      per_socket;
+       enum munittype mtype;
+};
+
+/*
+ * List of PCI device ids that we need together with some device
+ * number and function numbers to tell which memory controller the
+ * device belongs to.
+ */
+static const struct munit skx_all_munits[] = {
+       { 0x2054, { }, 1, 1, SAD_ALL },
+       { 0x2055, { }, 1, 1, UTIL_ALL },
+       { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
+       { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
+       { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
+       { 0x208e, { }, 1, 0, SAD },
+       { }
+};
+
+/*
+ * We use the per-socket device 0x2016 to count how many sockets are present,
+ * and to detemine which PCI buses are associated with each socket. Allocate
+ * and build the full list of all the skx_dev structures that we need here.
+ */
+static int get_all_bus_mappings(void)
+{
+       struct pci_dev *pdev, *prev;
+       struct skx_dev *d;
+       u32 reg;
+       int ndev = 0;
+
+       prev = NULL;
+       for (;;) {
+               pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
+               if (!pdev)
+                       break;
+               ndev++;
+               d = kzalloc(sizeof(*d), GFP_KERNEL);
+               if (!d) {
+                       pci_dev_put(pdev);
+                       return -ENOMEM;
+               }
+               pci_read_config_dword(pdev, 0xCC, &reg);
+               d->bus[0] =  GET_BITFIELD(reg, 0, 7);
+               d->bus[1] =  GET_BITFIELD(reg, 8, 15);
+               d->bus[2] =  GET_BITFIELD(reg, 16, 23);
+               d->bus[3] =  GET_BITFIELD(reg, 24, 31);
+               edac_dbg(2, "busses: %x, %x, %x, %x\n",
+                        d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
+               list_add_tail(&d->list, &skx_edac_list);
+               skx_num_sockets++;
+               prev = pdev;
+       }
+
+       return ndev;
+}
+
+static int get_all_munits(const struct munit *m)
+{
+       struct pci_dev *pdev, *prev;
+       struct skx_dev *d;
+       u32 reg;
+       int i = 0, ndev = 0;
+
+       prev = NULL;
+       for (;;) {
+               pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
+               if (!pdev)
+                       break;
+               ndev++;
+               if (m->per_socket == NUM_IMC) {
+                       for (i = 0; i < NUM_IMC; i++)
+                               if (m->devfn[i] == pdev->devfn)
+                                       break;
+                       if (i == NUM_IMC)
+                               goto fail;
+               }
+               d = get_skx_dev(pdev->bus->number, m->busidx);
+               if (!d)
+                       goto fail;
+
+               /* Be sure that the device is enabled */
+               if (unlikely(pci_enable_device(pdev) < 0)) {
+                       skx_printk(KERN_ERR,
+                               "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
+                       goto fail;
+               }
+
+               switch (m->mtype) {
+               case CHAN0: case CHAN1: case CHAN2:
+                       pci_dev_get(pdev);
+                       d->imc[i].chan[m->mtype].cdev = pdev;
+                       break;
+               case SAD_ALL:
+                       pci_dev_get(pdev);
+                       d->sad_all = pdev;
+                       break;
+               case UTIL_ALL:
+                       pci_dev_get(pdev);
+                       d->util_all = pdev;
+                       break;
+               case SAD:
+                       /*
+                        * one of these devices per core, including cores
+                        * that don't exist on this SKU. Ignore any that
+                        * read a route table of zero, make sure all the
+                        * non-zero values match.
+                        */
+                       pci_read_config_dword(pdev, 0xB4, &reg);
+                       if (reg != 0) {
+                               if (d->mcroute == 0)
+                                       d->mcroute = reg;
+                               else if (d->mcroute != reg) {
+                                       skx_printk(KERN_ERR,
+                                               "mcroute mismatch\n");
+                                       goto fail;
+                               }
+                       }
+                       ndev--;
+                       break;
+               }
+
+               prev = pdev;
+       }
+
+       return ndev;
+fail:
+       pci_dev_put(pdev);
+       return -ENODEV;
+}
+
+const struct x86_cpu_id skx_cpuids[] = {
+       { X86_VENDOR_INTEL, 6, 0x55, 0, 0 },    /* Skylake */
+       { }
+};
+MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
+
+static u8 get_src_id(struct skx_dev *d)
+{
+       u32 reg;
+
+       pci_read_config_dword(d->util_all, 0xF0, &reg);
+
+       return GET_BITFIELD(reg, 12, 14);
+}
+
+static u8 skx_get_node_id(struct skx_dev *d)
+{
+       u32 reg;
+
+       pci_read_config_dword(d->util_all, 0xF4, &reg);
+
+       return GET_BITFIELD(reg, 0, 2);
+}
+
+static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
+                        int maxval, char *name)
+{
+       u32 val = GET_BITFIELD(reg, lobit, hibit);
+
+       if (val < minval || val > maxval) {
+               edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
+               return -EINVAL;
+       }
+       return val + add;
+}
+
+#define IS_DIMM_PRESENT(mtr)           GET_BITFIELD((mtr), 15, 15)
+
+#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks")
+#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
+#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
+
+static int get_width(u32 mtr)
+{
+       switch (GET_BITFIELD(mtr, 8, 9)) {
+       case 0:
+               return DEV_X4;
+       case 1:
+               return DEV_X8;
+       case 2:
+               return DEV_X16;
+       }
+       return DEV_UNKNOWN;
+}
+
+static int skx_get_hi_lo(void)
+{
+       struct pci_dev *pdev;
+       u32 reg;
+
+       pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
+       if (!pdev) {
+               edac_dbg(0, "Can't get tolm/tohm\n");
+               return -ENODEV;
+       }
+
+       pci_read_config_dword(pdev, 0xD0, &reg);
+       skx_tolm = reg;
+       pci_read_config_dword(pdev, 0xD4, &reg);
+       skx_tohm = reg;
+       pci_read_config_dword(pdev, 0xD8, &reg);
+       skx_tohm |= (u64)reg << 32;
+
+       pci_dev_put(pdev);
+       edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
+
+       return 0;
+}
+
+static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
+                        struct skx_imc *imc, int chan, int dimmno)
+{
+       int  banks = 16, ranks, rows, cols, npages;
+       u64 size;
+
+       if (!IS_DIMM_PRESENT(mtr))
+               return 0;
+       ranks = numrank(mtr);
+       rows = numrow(mtr);
+       cols = numcol(mtr);
+
+       /*
+        * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
+        */
+       size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
+       npages = MiB_TO_PAGES(size);
+
+       edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
+                imc->mc, chan, dimmno, size, npages,
+                banks, ranks, rows, cols);
+
+       imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
+       imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
+       imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
+       imc->chan[chan].dimms[dimmno].rowbits = rows;
+       imc->chan[chan].dimms[dimmno].colbits = cols;
+
+       dimm->nr_pages = npages;
+       dimm->grain = 32;
+       dimm->dtype = get_width(mtr);
+       dimm->mtype = MEM_DDR4;
+       dimm->edac_mode = EDAC_SECDED; /* likely better than this */
+       snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
+                imc->src_id, imc->lmc, chan, dimmno);
+
+       return 1;
+}
+
+#define SKX_GET_MTMTR(dev, reg) \
+       pci_read_config_dword((dev), 0x87c, &reg)
+
+static bool skx_check_ecc(struct pci_dev *pdev)
+{
+       u32 mtmtr;
+
+       SKX_GET_MTMTR(pdev, mtmtr);
+
+       return !!GET_BITFIELD(mtmtr, 2, 2);
+}
+
+static int skx_get_dimm_config(struct mem_ctl_info *mci)
+{
+       struct skx_pvt *pvt = mci->pvt_info;
+       struct skx_imc *imc = pvt->imc;
+       struct dimm_info *dimm;
+       int i, j;
+       u32 mtr, amap;
+       int ndimms;
+
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               ndimms = 0;
+               pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
+               for (j = 0; j < NUM_DIMMS; j++) {
+                       dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
+                                            mci->n_layers, i, j, 0);
+                       pci_read_config_dword(imc->chan[i].cdev,
+                                       0x80 + 4*j, &mtr);
+                       ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
+               }
+               if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
+                       skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
+                       return -ENODEV;
+               }
+       }
+
+       return 0;
+}
+
+static void skx_unregister_mci(struct skx_imc *imc)
+{
+       struct mem_ctl_info *mci = imc->mci;
+
+       if (!mci)
+               return;
+
+       edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
+
+       /* Remove MC sysfs nodes */
+       edac_mc_del_mc(mci->pdev);
+
+       edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
+       kfree(mci->ctl_name);
+       edac_mc_free(mci);
+}
+
+static int skx_register_mci(struct skx_imc *imc)
+{
+       struct mem_ctl_info *mci;
+       struct edac_mc_layer layers[2];
+       struct pci_dev *pdev = imc->chan[0].cdev;
+       struct skx_pvt *pvt;
+       int rc;
+
+       /* allocate a new MC control structure */
+       layers[0].type = EDAC_MC_LAYER_CHANNEL;
+       layers[0].size = NUM_CHANNELS;
+       layers[0].is_virt_csrow = false;
+       layers[1].type = EDAC_MC_LAYER_SLOT;
+       layers[1].size = NUM_DIMMS;
+       layers[1].is_virt_csrow = true;
+       mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
+                           sizeof(struct skx_pvt));
+
+       if (unlikely(!mci))
+               return -ENOMEM;
+
+       edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
+
+       /* Associate skx_dev and mci for future usage */
+       imc->mci = mci;
+       pvt = mci->pvt_info;
+       pvt->imc = imc;
+
+       mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
+                                 imc->node_id, imc->lmc);
+       mci->mtype_cap = MEM_FLAG_DDR4;
+       mci->edac_ctl_cap = EDAC_FLAG_NONE;
+       mci->edac_cap = EDAC_FLAG_NONE;
+       mci->mod_name = "skx_edac.c";
+       mci->dev_name = pci_name(imc->chan[0].cdev);
+       mci->mod_ver = SKX_REVISION;
+       mci->ctl_page_to_phys = NULL;
+
+       rc = skx_get_dimm_config(mci);
+       if (rc < 0)
+               goto fail;
+
+       /* record ptr to the generic device */
+       mci->pdev = &pdev->dev;
+
+       /* add this new MC control structure to EDAC's list of MCs */
+       if (unlikely(edac_mc_add_mc(mci))) {
+               edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
+               rc = -EINVAL;
+               goto fail;
+       }
+
+       return 0;
+
+fail:
+       kfree(mci->ctl_name);
+       edac_mc_free(mci);
+       imc->mci = NULL;
+       return rc;
+}
+
+#define        SKX_MAX_SAD 24
+
+#define SKX_GET_SAD(d, i, reg) \
+       pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
+#define SKX_GET_ILV(d, i, reg) \
+       pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
+
+#define        SKX_SAD_MOD3MODE(sad)   GET_BITFIELD((sad), 30, 31)
+#define        SKX_SAD_MOD3(sad)       GET_BITFIELD((sad), 27, 27)
+#define SKX_SAD_LIMIT(sad)     (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
+#define        SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
+#define        SKX_SAD_ATTR(sad)       GET_BITFIELD((sad), 3, 4)
+#define        SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
+#define SKX_SAD_ENABLE(sad)    GET_BITFIELD((sad), 0, 0)
+
+#define SKX_ILV_REMOTE(tgt)    (((tgt) & 8) == 0)
+#define SKX_ILV_TARGET(tgt)    ((tgt) & 7)
+
+static bool skx_sad_decode(struct decoded_addr *res)
+{
+       struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
+       u64 addr = res->addr;
+       int i, idx, tgt, lchan, shift;
+       u32 sad, ilv;
+       u64 limit, prev_limit;
+       int remote = 0;
+
+       /* Simple sanity check for I/O space or out of range */
+       if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
+               edac_dbg(0, "Address %llx out of range\n", addr);
+               return false;
+       }
+
+restart:
+       prev_limit = 0;
+       for (i = 0; i < SKX_MAX_SAD; i++) {
+               SKX_GET_SAD(d, i, sad);
+               limit = SKX_SAD_LIMIT(sad);
+               if (SKX_SAD_ENABLE(sad)) {
+                       if (addr >= prev_limit && addr <= limit)
+                               goto sad_found;
+               }
+               prev_limit = limit + 1;
+       }
+       edac_dbg(0, "No SAD entry for %llx\n", addr);
+       return false;
+
+sad_found:
+       SKX_GET_ILV(d, i, ilv);
+
+       switch (SKX_SAD_INTERLEAVE(sad)) {
+       case 0:
+               idx = GET_BITFIELD(addr, 6, 8);
+               break;
+       case 1:
+               idx = GET_BITFIELD(addr, 8, 10);
+               break;
+       case 2:
+               idx = GET_BITFIELD(addr, 12, 14);
+               break;
+       case 3:
+               idx = GET_BITFIELD(addr, 30, 32);
+               break;
+       }
+
+       tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
+
+       /* If point to another node, find it and start over */
+       if (SKX_ILV_REMOTE(tgt)) {
+               if (remote) {
+                       edac_dbg(0, "Double remote!\n");
+                       return false;
+               }
+               remote = 1;
+               list_for_each_entry(d, &skx_edac_list, list) {
+                       if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
+                               goto restart;
+               }
+               edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
+               return false;
+       }
+
+       if (SKX_SAD_MOD3(sad) == 0)
+               lchan = SKX_ILV_TARGET(tgt);
+       else {
+               switch (SKX_SAD_MOD3MODE(sad)) {
+               case 0:
+                       shift = 6;
+                       break;
+               case 1:
+                       shift = 8;
+                       break;
+               case 2:
+                       shift = 12;
+                       break;
+               default:
+                       edac_dbg(0, "illegal mod3mode\n");
+                       return false;
+               }
+               switch (SKX_SAD_MOD3ASMOD2(sad)) {
+               case 0:
+                       lchan = (addr >> shift) % 3;
+                       break;
+               case 1:
+                       lchan = (addr >> shift) % 2;
+                       break;
+               case 2:
+                       lchan = (addr >> shift) % 2;
+                       lchan = (lchan << 1) | ~lchan;
+                       break;
+               case 3:
+                       lchan = ((addr >> shift) % 2) << 1;
+                       break;
+               }
+               lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
+       }
+
+       res->dev = d;
+       res->socket = d->imc[0].src_id;
+       res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
+       res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
+
+       edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
+                res->addr, res->socket, res->imc, res->channel);
+       return true;
+}
+
+#define        SKX_MAX_TAD 8
+
+#define SKX_GET_TADBASE(d, mc, i, reg)                 \
+       pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
+#define SKX_GET_TADWAYNESS(d, mc, i, reg)              \
+       pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
+#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)     \
+       pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
+
+#define        SKX_TAD_BASE(b)         ((u64)GET_BITFIELD((b), 12, 31) << 26)
+#define SKX_TAD_SKT_GRAN(b)    GET_BITFIELD((b), 4, 5)
+#define SKX_TAD_CHN_GRAN(b)    GET_BITFIELD((b), 6, 7)
+#define        SKX_TAD_LIMIT(b)        (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
+#define        SKX_TAD_OFFSET(b)       ((u64)GET_BITFIELD((b), 4, 23) << 26)
+#define        SKX_TAD_SKTWAYS(b)      (1 << GET_BITFIELD((b), 10, 11))
+#define        SKX_TAD_CHNWAYS(b)      (GET_BITFIELD((b), 8, 9) + 1)
+
+/* which bit used for both socket and channel interleave */
+static int skx_granularity[] = { 6, 8, 12, 30 };
+
+static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
+{
+       addr >>= shift;
+       addr /= ways;
+       addr <<= shift;
+
+       return addr | (lowbits & ((1ull << shift) - 1));
+}
+
+static bool skx_tad_decode(struct decoded_addr *res)
+{
+       int i;
+       u32 base, wayness, chnilvoffset;
+       int skt_interleave_bit, chn_interleave_bit;
+       u64 channel_addr;
+
+       for (i = 0; i < SKX_MAX_TAD; i++) {
+               SKX_GET_TADBASE(res->dev, res->imc, i, base);
+               SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
+               if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
+                       goto tad_found;
+       }
+       edac_dbg(0, "No TAD entry for %llx\n", res->addr);
+       return false;
+
+tad_found:
+       res->sktways = SKX_TAD_SKTWAYS(wayness);
+       res->chanways = SKX_TAD_CHNWAYS(wayness);
+       skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
+       chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
+
+       SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
+       channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
+
+       if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
+               /* Must handle channel first, then socket */
+               channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
+                                                res->chanways, channel_addr);
+               channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
+                                                res->sktways, channel_addr);
+       } else {
+               /* Handle socket then channel. Preserve low bits from original address */
+               channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
+                                                res->sktways, res->addr);
+               channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
+                                                res->chanways, res->addr);
+       }
+
+       res->chan_addr = channel_addr;
+
+       edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
+                res->addr, res->chan_addr, res->sktways, res->chanways);
+       return true;
+}
+
+#define SKX_MAX_RIR 4
+
+#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)          \
+       pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
+                             0x108 + 4 * (i), &reg)
+#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)         \
+       pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
+                             0x120 + 16 * idx + 4 * (i), &reg)
+
+#define        SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
+#define        SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
+#define        SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
+#define        SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
+#define        SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
+
+static bool skx_rir_decode(struct decoded_addr *res)
+{
+       int i, idx, chan_rank;
+       int shift;
+       u32 rirway, rirlv;
+       u64 rank_addr, prev_limit = 0, limit;
+
+       if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
+               shift = 6;
+       else
+               shift = 13;
+
+       for (i = 0; i < SKX_MAX_RIR; i++) {
+               SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
+               limit = SKX_RIR_LIMIT(rirway);
+               if (SKX_RIR_VALID(rirway)) {
+                       if (prev_limit <= res->chan_addr &&
+                           res->chan_addr <= limit)
+                               goto rir_found;
+               }
+               prev_limit = limit;
+       }
+       edac_dbg(0, "No RIR entry for %llx\n", res->addr);
+       return false;
+
+rir_found:
+       rank_addr = res->chan_addr >> shift;
+       rank_addr /= SKX_RIR_WAYS(rirway);
+       rank_addr <<= shift;
+       rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
+
+       res->rank_address = rank_addr;
+       idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
+
+       SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
+       res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
+       chan_rank = SKX_RIR_CHAN_RANK(rirlv);
+       res->channel_rank = chan_rank;
+       res->dimm = chan_rank / 4;
+       res->rank = chan_rank % 4;
+
+       edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
+                res->addr, res->dimm, res->rank,
+                res->channel_rank, res->rank_address);
+       return true;
+}
+
+static u8 skx_close_row[] = {
+       15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
+};
+static u8 skx_close_column[] = {
+       3, 4, 5, 14, 19, 23, 24, 25, 26, 27
+};
+static u8 skx_open_row[] = {
+       14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
+};
+static u8 skx_open_column[] = {
+       3, 4, 5, 6, 7, 8, 9, 10, 11, 12
+};
+static u8 skx_open_fine_column[] = {
+       3, 4, 5, 7, 8, 9, 10, 11, 12, 13
+};
+
+static int skx_bits(u64 addr, int nbits, u8 *bits)
+{
+       int i, res = 0;
+
+       for (i = 0; i < nbits; i++)
+               res |= ((addr >> bits[i]) & 1) << i;
+       return res;
+}
+
+static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
+{
+       int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
+
+       if (do_xor)
+               ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
+
+       return ret;
+}
+
+static bool skx_mad_decode(struct decoded_addr *r)
+{
+       struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
+       int bg0 = dimm->fine_grain_bank ? 6 : 13;
+
+       if (dimm->close_pg) {
+               r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
+               r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
+               r->column |= 0x400; /* C10 is autoprecharge, always set */
+               r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
+               r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
+       } else {
+               r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
+               if (dimm->fine_grain_bank)
+                       r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
+               else
+                       r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
+               r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
+               r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
+       }
+       r->row &= (1u << dimm->rowbits) - 1;
+
+       edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
+                r->addr, r->row, r->column, r->bank_address,
+                r->bank_group);
+       return true;
+}
+
+static bool skx_decode(struct decoded_addr *res)
+{
+
+       return skx_sad_decode(res) && skx_tad_decode(res) &&
+               skx_rir_decode(res) && skx_mad_decode(res);
+}
+
+#ifdef CONFIG_EDAC_DEBUG
+/*
+ * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
+ * Write an address to this file to exercise the address decode
+ * logic in this driver.
+ */
+static struct dentry *skx_test;
+static u64 skx_fake_addr;
+
+static int debugfs_u64_set(void *data, u64 val)
+{
+       struct decoded_addr res;
+
+       res.addr = val;
+       skx_decode(&res);
+
+       return 0;
+}
+
+DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
+
+static struct dentry *mydebugfs_create(const char *name, umode_t mode,
+                                      struct dentry *parent, u64 *value)
+{
+       return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
+}
+
+static void setup_skx_debug(void)
+{
+       skx_test = debugfs_create_dir("skx_edac_test", NULL);
+       mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
+}
+
+static void teardown_skx_debug(void)
+{
+       debugfs_remove_recursive(skx_test);
+}
+#else
+static void setup_skx_debug(void)
+{
+}
+
+static void teardown_skx_debug(void)
+{
+}
+#endif /*CONFIG_EDAC_DEBUG*/
+
+static void skx_mce_output_error(struct mem_ctl_info *mci,
+                                const struct mce *m,
+                                struct decoded_addr *res)
+{
+       enum hw_event_mc_err_type tp_event;
+       char *type, *optype, msg[256];
+       bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
+       bool overflow = GET_BITFIELD(m->status, 62, 62);
+       bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
+       bool recoverable;
+       u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
+       u32 mscod = GET_BITFIELD(m->status, 16, 31);
+       u32 errcode = GET_BITFIELD(m->status, 0, 15);
+       u32 optypenum = GET_BITFIELD(m->status, 4, 6);
+
+       recoverable = GET_BITFIELD(m->status, 56, 56);
+
+       if (uncorrected_error) {
+               if (ripv) {
+                       type = "FATAL";
+                       tp_event = HW_EVENT_ERR_FATAL;
+               } else {
+                       type = "NON_FATAL";
+                       tp_event = HW_EVENT_ERR_UNCORRECTED;
+               }
+       } else {
+               type = "CORRECTED";
+               tp_event = HW_EVENT_ERR_CORRECTED;
+       }
+
+       /*
+        * According with Table 15-9 of the Intel Architecture spec vol 3A,
+        * memory errors should fit in this mask:
+        *      000f 0000 1mmm cccc (binary)
+        * where:
+        *      f = Correction Report Filtering Bit. If 1, subsequent errors
+        *          won't be shown
+        *      mmm = error type
+        *      cccc = channel
+        * If the mask doesn't match, report an error to the parsing logic
+        */
+       if (!((errcode & 0xef80) == 0x80)) {
+               optype = "Can't parse: it is not a mem";
+       } else {
+               switch (optypenum) {
+               case 0:
+                       optype = "generic undef request error";
+                       break;
+               case 1:
+                       optype = "memory read error";
+                       break;
+               case 2:
+                       optype = "memory write error";
+                       break;
+               case 3:
+                       optype = "addr/cmd error";
+                       break;
+               case 4:
+                       optype = "memory scrubbing error";
+                       break;
+               default:
+                       optype = "reserved";
+                       break;
+               }
+       }
+
+       snprintf(msg, sizeof(msg),
+                "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
+                overflow ? " OVERFLOW" : "",
+                (uncorrected_error && recoverable) ? " recoverable" : "",
+                mscod, errcode,
+                res->socket, res->imc, res->rank,
+                res->bank_group, res->bank_address, res->row, res->column);
+
+       edac_dbg(0, "%s\n", msg);
+
+       /* Call the helper to output message */
+       edac_mc_handle_error(tp_event, mci, core_err_cnt,
+                            m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
+                            res->channel, res->dimm, -1,
+                            optype, msg);
+}
+
+static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
+                              void *data)
+{
+       struct mce *mce = (struct mce *)data;
+       struct decoded_addr res;
+       struct mem_ctl_info *mci;
+       char *type;
+
+       if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
+               return NOTIFY_DONE;
+
+       /* ignore unless this is memory related with an address */
+       if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
+               return NOTIFY_DONE;
+
+       res.addr = mce->addr;
+       if (!skx_decode(&res))
+               return NOTIFY_DONE;
+       mci = res.dev->imc[res.imc].mci;
+
+       if (mce->mcgstatus & MCG_STATUS_MCIP)
+               type = "Exception";
+       else
+               type = "Event";
+
+       skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
+
+       skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
+                         "Bank %d: %016Lx\n", mce->extcpu, type,
+                         mce->mcgstatus, mce->bank, mce->status);
+       skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
+       skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
+       skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
+
+       skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
+                         "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
+                         mce->time, mce->socketid, mce->apicid);
+
+       skx_mce_output_error(mci, mce, &res);
+
+       return NOTIFY_DONE;
+}
+
+static struct notifier_block skx_mce_dec = {
+       .notifier_call = skx_mce_check_error,
+};
+
+static void skx_remove(void)
+{
+       int i, j;
+       struct skx_dev *d, *tmp;
+
+       edac_dbg(0, "\n");
+
+       list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
+               list_del(&d->list);
+               for (i = 0; i < NUM_IMC; i++) {
+                       skx_unregister_mci(&d->imc[i]);
+                       for (j = 0; j < NUM_CHANNELS; j++)
+                               pci_dev_put(d->imc[i].chan[j].cdev);
+               }
+               pci_dev_put(d->util_all);
+               pci_dev_put(d->sad_all);
+
+               kfree(d);
+       }
+}
+
+/*
+ * skx_init:
+ *     make sure we are running on the correct cpu model
+ *     search for all the devices we need
+ *     check which DIMMs are present.
+ */
+int __init skx_init(void)
+{
+       const struct x86_cpu_id *id;
+       const struct munit *m;
+       int rc = 0, i;
+       u8 mc = 0, src_id, node_id;
+       struct skx_dev *d;
+
+       edac_dbg(2, "\n");
+
+       id = x86_match_cpu(skx_cpuids);
+       if (!id)
+               return -ENODEV;
+
+       rc = skx_get_hi_lo();
+       if (rc)
+               return rc;
+
+       rc = get_all_bus_mappings();
+       if (rc < 0)
+               goto fail;
+       if (rc == 0) {
+               edac_dbg(2, "No memory controllers found\n");
+               return -ENODEV;
+       }
+
+       for (m = skx_all_munits; m->did; m++) {
+               rc = get_all_munits(m);
+               if (rc < 0)
+                       goto fail;
+               if (rc != m->per_socket * skx_num_sockets) {
+                       edac_dbg(2, "Expected %d, got %d of %x\n",
+                                m->per_socket * skx_num_sockets, rc, m->did);
+                       rc = -ENODEV;
+                       goto fail;
+               }
+       }
+
+       list_for_each_entry(d, &skx_edac_list, list) {
+               src_id = get_src_id(d);
+               node_id = skx_get_node_id(d);
+               edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
+               for (i = 0; i < NUM_IMC; i++) {
+                       d->imc[i].mc = mc++;
+                       d->imc[i].lmc = i;
+                       d->imc[i].src_id = src_id;
+                       d->imc[i].node_id = node_id;
+                       rc = skx_register_mci(&d->imc[i]);
+                       if (rc < 0)
+                               goto fail;
+               }
+       }
+
+       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
+       opstate_init();
+
+       setup_skx_debug();
+
+       mce_register_decode_chain(&skx_mce_dec);
+
+       return 0;
+fail:
+       skx_remove();
+       return rc;
+}
+
+static void __exit skx_exit(void)
+{
+       edac_dbg(2, "\n");
+       mce_unregister_decode_chain(&skx_mce_dec);
+       skx_remove();
+       teardown_skx_debug();
+}
+
+module_init(skx_init);
+module_exit(skx_exit);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Tony Luck");
+MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");