unsigned int arg)
{
unsigned int rem, to = from + nr;
+ int err;
if (!(card->host->caps & MMC_CAP_ERASE) ||
!(card->csd.cmdclass & CCC_ERASE))
/* 'from' and 'to' are inclusive */
to -= 1;
+ /*
+ * Special case where only one erase-group fits in the timeout budget:
+ * If the region crosses an erase-group boundary on this particular
+ * case, we will be trimming more than one erase-group which, does not
+ * fit in the timeout budget of the controller, so we need to split it
+ * and call mmc_do_erase() twice if necessary. This special case is
+ * identified by the card->eg_boundary flag.
+ */
+ if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) &&
+ (from % card->erase_size)) {
+ rem = card->erase_size - (from % card->erase_size);
+ err = mmc_do_erase(card, from, from + rem - 1, arg);
+ from += rem;
+ if ((err) || (to <= from))
+ return err;
+ }
+
return mmc_do_erase(card, from, to, arg);
}
EXPORT_SYMBOL(mmc_erase);
if (!qty)
return 0;
+ /*
+ * When specifying a sector range to trim, chances are we might cross
+ * an erase-group boundary even if the amount of sectors is less than
+ * one erase-group.
+ * If we can only fit one erase-group in the controller timeout budget,
+ * we have to care that erase-group boundaries are not crossed by a
+ * single trim operation. We flag that special case with "eg_boundary".
+ * In all other cases we can just decrement qty and pretend that we
+ * always touch (qty + 1) erase-groups as a simple optimization.
+ */
if (qty == 1)
- return 1;
+ card->eg_boundary = 1;
+ else
+ qty--;
/* Convert qty to sectors */
if (card->erase_shift)
- max_discard = --qty << card->erase_shift;
+ max_discard = qty << card->erase_shift;
else if (mmc_card_sd(card))
- max_discard = qty;
+ max_discard = qty + 1;
else
- max_discard = --qty * card->erase_size;
+ max_discard = qty * card->erase_size;
return max_discard;
}