memset(p, 0, sizeof(*p));
}
-int btrfs_cow_block(struct btrfs_root *root,
+static int btrfs_cow_block(struct btrfs_root *root,
struct btrfs_buffer *buf,
struct btrfs_buffer *parent,
int parent_slot,
/*
* compare two keys in a memcmp fashion
*/
-int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
+static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
{
struct btrfs_key k1;
return 0;
}
-int check_node(struct btrfs_path *path, int level)
+static int check_node(struct btrfs_path *path, int level)
{
int i;
struct btrfs_node *parent = NULL;
return 0;
}
-int check_leaf(struct btrfs_path *path, int level)
+static int check_leaf(struct btrfs_path *path, int level)
{
int i;
struct btrfs_leaf *leaf = &path->nodes[level]->leaf;
return 0;
}
-int check_block(struct btrfs_path *path, int level)
+static int check_block(struct btrfs_path *path, int level)
{
if (level == 0)
return check_leaf(path, level);
*
* slot may point to max if the key is bigger than all of the keys
*/
-int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
+static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
int max, int *slot)
{
int low = 0;
* simple bin_search frontend that does the right thing for
* leaves vs nodes
*/
-int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
+static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
{
if (btrfs_is_leaf(c)) {
struct btrfs_leaf *l = (struct btrfs_leaf *)c;
return -1;
}
-struct btrfs_buffer *read_node_slot(struct btrfs_root *root,
+static struct btrfs_buffer *read_node_slot(struct btrfs_root *root,
struct btrfs_buffer *parent_buf,
int slot)
{
*
* returns 0 if everything worked, non-zero otherwise.
*/
-int alloc_extent(struct btrfs_root *root, u64 num_blocks, u64 search_start,
- u64 search_end, u64 owner, struct btrfs_key *ins)
+static int alloc_extent(struct btrfs_root *root, u64 num_blocks,
+ u64 search_start, u64 search_end, u64 owner,
+ struct btrfs_key *ins)
{
int ret;
int pending_ret;
return buf;
}
-int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path, int *level)
+/*
+ * helper function for drop_snapshot, this walks down the tree dropping ref
+ * counts as it goes.
+ */
+static int walk_down_tree(struct btrfs_root *root,
+ struct btrfs_path *path, int *level)
{
struct btrfs_buffer *next;
struct btrfs_buffer *cur;
BUG_ON(ret);
if (refs > 1)
goto out;
+ /*
+ * walk down to the last node level and free all the leaves
+ */
while(*level > 0) {
cur = path->nodes[*level];
if (path->slots[*level] >=
return 0;
}
-int walk_up_tree(struct btrfs_root *root, struct btrfs_path *path, int *level)
+/*
+ * helper for dropping snapshots. This walks back up the tree in the path
+ * to find the first node higher up where we haven't yet gone through
+ * all the slots
+ */
+static int walk_up_tree(struct btrfs_root *root, struct btrfs_path *path,
+ int *level)
{
int i;
int slot;
return 1;
}
+/*
+ * drop the reference count on the tree rooted at 'snap'. This traverses
+ * the tree freeing any blocks that have a ref count of zero after being
+ * decremented.
+ */
int btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_buffer *snap)
{
- int ret;
+ int ret = 0;;
+ int wret;
int level;
struct btrfs_path path;
int i;
path.nodes[level] = snap;
path.slots[level] = 0;
while(1) {
- ret = walk_down_tree(root, &path, &level);
- if (ret > 0)
+ wret = walk_down_tree(root, &path, &level);
+ if (wret > 0)
break;
- ret = walk_up_tree(root, &path, &level);
- if (ret > 0)
+ if (wret < 0)
+ ret = wret;
+
+ wret = walk_up_tree(root, &path, &level);
+ if (wret > 0)
break;
+ if (wret < 0)
+ ret = wret;
}
for (i = 0; i <= orig_level; i++) {
if (path.nodes[i]) {
btrfs_block_release(root, path.nodes[i]);
}
}
-
- return 0;
+ return ret;
}