ACQUIRE operation has completed.
Memory operations issued before the ACQUIRE may be completed after
- the ACQUIRE operation has completed. An smp_mb__before_spinlock(),
- combined with a following ACQUIRE, orders prior stores against
- subsequent loads and stores. Note that this is weaker than smp_mb()!
- The smp_mb__before_spinlock() primitive is free on many architectures.
+ the ACQUIRE operation has completed.
(2) RELEASE operation implication:
뒤에 완료됩니다.
ACQUIRE 앞에서 요청된 메모리 오퍼레이션은 ACQUIRE 오퍼레이션이 완료된 후에
- 완료될 수 있습니다. smp_mb__before_spinlock() 뒤에 ACQUIRE 가 실행되는
- 코드 블록은 블록 앞의 스토어를 블록 뒤의 로드와 스토어에 대해 순서
- 맞춥니다. 이건 smp_mb() 보다 완화된 것임을 기억하세요! 많은 아키텍쳐에서
- smp_mb__before_spinlock() 은 사실 아무일도 하지 않습니다.
+ 완료될 수 있습니다.
(2) RELEASE 오퍼레이션의 영향:
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
-/*
- * Accesses appearing in program order before a spin_lock() operation
- * can be reordered with accesses inside the critical section, by virtue
- * of arch_spin_lock being constructed using acquire semantics.
- *
- * In cases where this is problematic (e.g. try_to_wake_up), an
- * smp_mb__before_spinlock() can restore the required ordering.
- */
-#define smp_mb__before_spinlock() smp_mb()
/* See include/linux/spinlock.h */
#define smp_mb__after_spinlock() smp_mb()
___p1; \
})
-/*
- * This must resolve to hwsync on SMP for the context switch path.
- * See _switch, and core scheduler context switch memory ordering
- * comments.
- */
-#define smp_mb__before_spinlock() smp_mb()
-
#include <asm-generic/barrier.h>
#endif /* _ASM_POWERPC_BARRIER_H */
goto out;
WRITE_ONCE(uwq->waken, true);
/*
- * The implicit smp_mb__before_spinlock in try_to_wake_up()
- * renders uwq->waken visible to other CPUs before the task is
- * waken.
+ * The Program-Order guarantees provided by the scheduler
+ * ensure uwq->waken is visible before the task is woken.
*/
ret = wake_up_state(wq->private, mode);
- if (ret)
+ if (ret) {
/*
* Wake only once, autoremove behavior.
*
- * After the effect of list_del_init is visible to the
- * other CPUs, the waitqueue may disappear from under
- * us, see the !list_empty_careful() in
- * handle_userfault(). try_to_wake_up() has an
- * implicit smp_mb__before_spinlock, and the
- * wq->private is read before calling the extern
- * function "wake_up_state" (which in turns calls
- * try_to_wake_up). While the spin_lock;spin_unlock;
- * wouldn't be enough, the smp_mb__before_spinlock is
- * enough to avoid an explicit smp_mb() here.
+ * After the effect of list_del_init is visible to the other
+ * CPUs, the waitqueue may disappear from under us, see the
+ * !list_empty_careful() in handle_userfault().
+ *
+ * try_to_wake_up() has an implicit smp_mb(), and the
+ * wq->private is read before calling the extern function
+ * "wake_up_state" (which in turns calls try_to_wake_up).
*/
list_del_init(&wq->entry);
+ }
out:
return ret;
}
#endif /*arch_spin_is_contended*/
#endif
-/*
- * Despite its name it doesn't necessarily has to be a full barrier.
- * It should only guarantee that a STORE before the critical section
- * can not be reordered with LOADs and STOREs inside this section.
- * spin_lock() is the one-way barrier, this LOAD can not escape out
- * of the region. So the default implementation simply ensures that
- * a STORE can not move into the critical section, smp_wmb() should
- * serialize it with another STORE done by spin_lock().
- */
-#ifndef smp_mb__before_spinlock
-#define smp_mb__before_spinlock() smp_wmb()
-#endif
-
/*
* This barrier must provide two things:
*