*
* @IEEE80211_BAND_2GHZ: 2.4GHz ISM band
* @IEEE80211_BAND_5GHZ: around 5GHz band (4.9-5.7)
+ * @IEEE80211_NUM_BANDS: number of defined bands
*/
enum ieee80211_band {
IEEE80211_BAND_2GHZ = NL80211_BAND_2GHZ,
* in this band. Must be sorted to give a valid "supported
* rates" IE, i.e. CCK rates first, then OFDM.
* @n_bitrates: Number of bitrates in @bitrates
+ * @ht_cap: HT capabilities in this band
*/
struct ieee80211_supported_band {
struct ieee80211_channel *channels;
* @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
* with the get_key() callback, must be in little endian,
* length given by @seq_len.
+ * @seq_len: length of @seq.
*/
struct key_params {
u8 *key;
/**
* enum survey_info_flags - survey information flags
*
+ * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
+ *
* Used by the driver to indicate which info in &struct survey_info
* it has filled in during the get_survey().
*/
/**
* struct survey_info - channel survey response
*
- * Used by dump_survey() to report back per-channel survey information.
- *
* @channel: the channel this survey record reports, mandatory
* @filled: bitflag of flags from &enum survey_info_flags
* @noise: channel noise in dBm. This and all following fields are
* optional
*
+ * Used by dump_survey() to report back per-channel survey information.
+ *
* This structure can later be expanded with things like
* channel duty cycle etc.
*/
*
* @PLINK_ACTION_INVALID: action 0 is reserved
* @PLINK_ACTION_OPEN: start mesh peer link establishment
- * @PLINK_ACTION_BLOCL: block traffic from this mesh peer
+ * @PLINK_ACTION_BLOCK: block traffic from this mesh peer
*/
enum plink_actions {
PLINK_ACTION_INVALID,
* (bitmask of BIT(NL80211_STA_FLAG_...))
* @listen_interval: listen interval or -1 for no change
* @aid: AID or zero for no change
+ * @plink_action: plink action to take
+ * @ht_capa: HT capabilities of station
*/
struct station_parameters {
u8 *supported_rates;
* Used by the driver to indicate which info in &struct mpath_info it has filled
* in during get_station() or dump_station().
*
- * MPATH_INFO_FRAME_QLEN: @frame_qlen filled
- * MPATH_INFO_SN: @sn filled
- * MPATH_INFO_METRIC: @metric filled
- * MPATH_INFO_EXPTIME: @exptime filled
- * MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
- * MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
- * MPATH_INFO_FLAGS: @flags filled
+ * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
+ * @MPATH_INFO_SN: @sn filled
+ * @MPATH_INFO_METRIC: @metric filled
+ * @MPATH_INFO_EXPTIME: @exptime filled
+ * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
+ * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
+ * @MPATH_INFO_FLAGS: @flags filled
*/
enum mpath_info_flags {
MPATH_INFO_FRAME_QLEN = BIT(0),
* @ie_len: length of ie in octets
* @wiphy: the wiphy this was for
* @dev: the interface
+ * @aborted: (internal) scan request was notified as aborted
*/
struct cfg80211_scan_request {
struct cfg80211_ssid *ssids;
* This structure describes a BSS (which may also be a mesh network)
* for use in scan results and similar.
*
+ * @channel: channel this BSS is on
* @bssid: BSSID of the BSS
* @tsf: timestamp of last received update
* @beacon_interval: the beacon interval as from the frame
* @ssid: SSID
* @ssid_len: Length of ssid in octets
* @auth_type: Authentication type (algorithm)
- * @assoc_ie: IEs for association request
- * @assoc_ie_len: Length of assoc_ie in octets
+ * @ie: IEs for association request
+ * @ie_len: Length of assoc_ie in octets
* @privacy: indicates whether privacy-enabled APs should be used
* @crypto: crypto settings
* @key_len: length of WEP key for shared key authentication
/**
* enum wiphy_params_flags - set_wiphy_params bitfield values
- * WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
- * WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
- * WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
- * WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
+ * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
+ * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
+ * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
+ * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
+ * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
*/
enum wiphy_params_flags {
WIPHY_PARAM_RETRY_SHORT = 1 << 0,
* @del_beacon: Remove beacon configuration and stop sending the beacon.
*
* @add_station: Add a new station.
- *
* @del_station: Remove a station; @mac may be NULL to remove all stations.
- *
* @change_station: Modify a given station.
+ * @get_station: get station information for the station identified by @mac
+ * @dump_station: dump station callback -- resume dump at index @idx
+ *
+ * @add_mpath: add a fixed mesh path
+ * @del_mpath: delete a given mesh path
+ * @change_mpath: change a given mesh path
+ * @get_mpath: get a mesh path for the given parameters
+ * @dump_mpath: dump mesh path callback -- resume dump at index @idx
*
* @get_mesh_params: Put the current mesh parameters into *params
*
* The mask is a bitfield which tells us which parameters to
* set, and which to leave alone.
*
- * @set_mesh_cfg: set mesh parameters (by now, just mesh id)
- *
* @change_bss: Modify parameters for a given BSS.
*
* @set_txq_params: Set TX queue parameters
* @get_tx_power: store the current TX power into the dbm variable;
* return 0 if successful
*
+ * @set_wds_peer: set the WDS peer for a WDS interface
+ *
* @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
* functions to adjust rfkill hw state
*
*
* @testmode_cmd: run a test mode command
*
+ * @set_bitrate_mask: set the bitrate mask configuration
+ *
* @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
* devices running firmwares capable of generating the (re) association
* RSN IE. It allows for faster roaming between WPA2 BSSIDs.
/**
* struct wiphy - wireless hardware description
- * @idx: the wiphy index assigned to this item
- * @class_dev: the class device representing /sys/class/ieee80211/<wiphy-name>
* @reg_notifier: the driver's regulatory notification callback
* @regd: the driver's regulatory domain, if one was requested via
* the regulatory_hint() API. This can be used by the driver
* @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
* -1 = fragmentation disabled, only odd values >= 256 used
* @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
- * @net: the network namespace this wiphy currently lives in
+ * @_net: the network namespace this wiphy currently lives in
* @perm_addr: permanent MAC address of this device
* @addr_mask: If the device supports multiple MAC addresses by masking,
* set this to a mask with variable bits set to 1, e.g. if the last
* by default for perm_addr. In this case, the mask should be set to
* all-zeroes. In this case it is assumed that the device can handle
* the same number of arbitrary MAC addresses.
+ * @debugfsdir: debugfs directory used for this wiphy, will be renamed
+ * automatically on wiphy renames
+ * @dev: (virtual) struct device for this wiphy
+ * @wext: wireless extension handlers
+ * @priv: driver private data (sized according to wiphy_new() parameter)
+ * @interface_modes: bitmask of interfaces types valid for this wiphy,
+ * must be set by driver
+ * @flags: wiphy flags, see &enum wiphy_flags
+ * @bss_priv_size: each BSS struct has private data allocated with it,
+ * this variable determines its size
+ * @max_scan_ssids: maximum number of SSIDs the device can scan for in
+ * any given scan
+ * @max_scan_ie_len: maximum length of user-controlled IEs device can
+ * add to probe request frames transmitted during a scan, must not
+ * include fixed IEs like supported rates
+ * @coverage_class: current coverage class
+ * @fw_version: firmware version for ethtool reporting
+ * @hw_version: hardware version for ethtool reporting
+ * @max_num_pmkids: maximum number of PMKIDs supported by device
+ * @privid: a pointer that drivers can use to identify if an arbitrary
+ * wiphy is theirs, e.g. in global notifiers
+ * @bands: information about bands/channels supported by this device
*/
struct wiphy {
/* assign these fields before you register the wiphy */
* @ssid: (private) Used by the internal configuration code
* @ssid_len: (private) Used by the internal configuration code
* @wext: (private) Used by the internal wireless extensions compat code
- * @wext_bssid: (private) Used by the internal wireless extensions compat code
* @use_4addr: indicates 4addr mode is used on this interface, must be
* set by driver (if supported) on add_interface BEFORE registering the
* netdev and may otherwise be used by driver read-only, will be update
* by cfg80211 on change_interface
* @action_registrations: list of registrations for action frames
* @action_registrations_lock: lock for the list
+ * @mtx: mutex used to lock data in this struct
+ * @cleanup_work: work struct used for cleanup that can't be done directly
*/
struct wireless_dev {
struct wiphy *wiphy;
/**
* ieee80211_channel_to_frequency - convert channel number to frequency
+ * @chan: channel number
*/
extern int ieee80211_channel_to_frequency(int chan);
/**
* ieee80211_frequency_to_channel - convert frequency to channel number
+ * @freq: center frequency
*/
extern int ieee80211_frequency_to_channel(int freq);
int freq);
/**
* ieee80211_get_channel - get channel struct from wiphy for specified frequency
+ * @wiphy: the struct wiphy to get the channel for
+ * @freq: the center frequency of the channel
*/
static inline struct ieee80211_channel *
ieee80211_get_channel(struct wiphy *wiphy, int freq)
* @is_radiotap_ns: indicates whether the current namespace is the default
* radiotap namespace or not
*
- * @overrides: override standard radiotap fields
- * @n_overrides: number of overrides
- *
* @_rtheader: pointer to the radiotap header we are walking through
* @_max_length: length of radiotap header in cpu byte ordering
* @_arg_index: next argument index
void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted);
/**
- * cfg80211_inform_bss - inform cfg80211 of a new BSS
+ * cfg80211_inform_bss_frame - inform cfg80211 of a received BSS frame
*
* @wiphy: the wiphy reporting the BSS
- * @bss: the found BSS
+ * @channel: The channel the frame was received on
+ * @mgmt: the management frame (probe response or beacon)
+ * @len: length of the management frame
* @signal: the signal strength, type depends on the wiphy's signal_type
* @gfp: context flags
*
struct ieee80211_mgmt *mgmt, size_t len,
s32 signal, gfp_t gfp);
+/**
+ * cfg80211_inform_bss - inform cfg80211 of a new BSS
+ *
+ * @wiphy: the wiphy reporting the BSS
+ * @channel: The channel the frame was received on
+ * @bssid: the BSSID of the BSS
+ * @timestamp: the TSF timestamp sent by the peer
+ * @capability: the capability field sent by the peer
+ * @beacon_interval: the beacon interval announced by the peer
+ * @ie: additional IEs sent by the peer
+ * @ielen: length of the additional IEs
+ * @signal: the signal strength, type depends on the wiphy's signal_type
+ * @gfp: context flags
+ *
+ * This informs cfg80211 that BSS information was found and
+ * the BSS should be updated/added.
+ */
struct cfg80211_bss*
cfg80211_inform_bss(struct wiphy *wiphy,
struct ieee80211_channel *channel,