while (bno < end && n < *nmap) {
bool need_alloc = false, wasdelay = false;
- /* in hole or beyoned EOF? */
+ /* in hole or beyond EOF? */
if (eof || bma.got.br_startoff > bno) {
+ /*
+ * CoW fork conversions should /never/ hit EOF or
+ * holes. There should always be something for us
+ * to work on.
+ */
+ ASSERT(!((flags & XFS_BMAPI_CONVERT) &&
+ (flags & XFS_BMAPI_COWFORK)));
+
if (flags & XFS_BMAPI_DELALLOC) {
/*
* For the COW fork we can reasonably get a
}
/*
- * Automatic CoW Reservation Freeing
- *
- * These functions automatically garbage collect leftover CoW reservations
- * that were made on behalf of a cowextsize hint when we start to run out
- * of quota or when the reservations sit around for too long. If the file
- * has dirty pages or is undergoing writeback, its CoW reservations will
- * be retained.
- *
- * The actual garbage collection piggybacks off the same code that runs
- * the speculative EOF preallocation garbage collector.
+ * Set ourselves up to free CoW blocks from this file. If it's already clean
+ * then we can bail out quickly, but otherwise we must back off if the file
+ * is undergoing some kind of write.
*/
-STATIC int
-xfs_inode_free_cowblocks(
+static bool
+xfs_prep_free_cowblocks(
struct xfs_inode *ip,
- int flags,
- void *args)
+ struct xfs_ifork *ifp)
{
- int ret;
- struct xfs_eofblocks *eofb = args;
- int match;
- struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
-
/*
* Just clear the tag if we have an empty cow fork or none at all. It's
* possible the inode was fully unshared since it was originally tagged.
if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
trace_xfs_inode_free_cowblocks_invalid(ip);
xfs_inode_clear_cowblocks_tag(ip);
- return 0;
+ return false;
}
/*
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
atomic_read(&VFS_I(ip)->i_dio_count))
+ return false;
+
+ return true;
+}
+
+/*
+ * Automatic CoW Reservation Freeing
+ *
+ * These functions automatically garbage collect leftover CoW reservations
+ * that were made on behalf of a cowextsize hint when we start to run out
+ * of quota or when the reservations sit around for too long. If the file
+ * has dirty pages or is undergoing writeback, its CoW reservations will
+ * be retained.
+ *
+ * The actual garbage collection piggybacks off the same code that runs
+ * the speculative EOF preallocation garbage collector.
+ */
+STATIC int
+xfs_inode_free_cowblocks(
+ struct xfs_inode *ip,
+ int flags,
+ void *args)
+{
+ struct xfs_eofblocks *eofb = args;
+ struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
+ int match;
+ int ret = 0;
+
+ if (!xfs_prep_free_cowblocks(ip, ifp))
return 0;
if (eofb) {
xfs_ilock(ip, XFS_IOLOCK_EXCL);
xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
- ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
+ /*
+ * Check again, nobody else should be able to dirty blocks or change
+ * the reflink iflag now that we have the first two locks held.
+ */
+ if (xfs_prep_free_cowblocks(ip, ifp))
+ ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
xfs_iunlock(ip, XFS_IOLOCK_EXCL);