return dev->of_node == data;
}
+/*
+ * The encoder drivers use drm_of_find_possible_crtcs to get upstream
+ * crtcs from the device tree using of_graph. For the results to be
+ * correct, encoders must be probed/bound after _all_ crtcs have been
+ * created. The existing code uses a depth first recursive traversal
+ * of the of_graph, which means the encoders downstream of the TCON
+ * get add right after the first TCON. The second TCON or CRTC will
+ * never be properly associated with encoders connected to it.
+ *
+ * Also, in a dual display pipeline setup, both frontends can feed
+ * either backend, and both backends can feed either TCON, we want
+ * all components of the same type to be added before the next type
+ * in the pipeline. Fortunately, the pipelines are perfectly symmetric,
+ * i.e. components of the same type are at the same depth when counted
+ * from the frontend. The only exception is the third pipeline in
+ * the A80 SoC, which we do not support anyway.
+ *
+ * Hence we can use a breadth first search traversal order to add
+ * components. We do not need to check for duplicates. The component
+ * matching system handles this for us.
+ */
+struct endpoint_list {
+ struct device_node *node;
+ struct list_head list;
+};
+
static int sun4i_drv_add_endpoints(struct device *dev,
+ struct list_head *endpoints,
struct component_match **match,
struct device_node *node)
{
struct device_node *port, *ep, *remote;
+ struct endpoint_list *endpoint;
int count = 0;
/*
}
}
- /* Walk down our tree */
- count += sun4i_drv_add_endpoints(dev, match, remote);
+ /* Add downstream nodes to the queue */
+ endpoint = kzalloc(sizeof(*endpoint), GFP_KERNEL);
+ if (!endpoint) {
+ of_node_put(remote);
+ return -ENOMEM;
+ }
- of_node_put(remote);
+ endpoint->node = remote;
+ list_add_tail(&endpoint->list, endpoints);
}
return count;
{
struct component_match *match = NULL;
struct device_node *np = pdev->dev.of_node;
- int i, count = 0;
+ struct endpoint_list *endpoint, *endpoint_temp;
+ int i, ret, count = 0;
+ LIST_HEAD(endpoints);
for (i = 0;; i++) {
struct device_node *pipeline = of_parse_phandle(np,
if (!pipeline)
break;
- count += sun4i_drv_add_endpoints(&pdev->dev, &match,
- pipeline);
- of_node_put(pipeline);
+ endpoint = kzalloc(sizeof(*endpoint), GFP_KERNEL);
+ if (!endpoint) {
+ ret = -ENOMEM;
+ goto err_free_endpoints;
+ }
+
+ endpoint->node = pipeline;
+ list_add_tail(&endpoint->list, &endpoints);
+ }
+
+ list_for_each_entry_safe(endpoint, endpoint_temp, &endpoints, list) {
+ /* process this endpoint */
+ ret = sun4i_drv_add_endpoints(&pdev->dev, &endpoints, &match,
+ endpoint->node);
+
+ /* sun4i_drv_add_endpoints can fail to allocate memory */
+ if (ret < 0)
+ goto err_free_endpoints;
+
+ count += ret;
- DRM_DEBUG_DRIVER("Queued %d outputs on pipeline %d\n",
- count, i);
+ /* delete and cleanup the current entry */
+ list_del(&endpoint->list);
+ of_node_put(endpoint->node);
+ kfree(endpoint);
}
if (count)
match);
else
return 0;
+
+err_free_endpoints:
+ list_for_each_entry_safe(endpoint, endpoint_temp, &endpoints, list) {
+ list_del(&endpoint->list);
+ of_node_put(endpoint->node);
+ kfree(endpoint);
+ }
+
+ return ret;
}
static int sun4i_drv_remove(struct platform_device *pdev)