--- /dev/null
- bits_per_word = transfer->bits_per_word ? : message->spi->bits_per_word;
- if ((bits_per_word > 0) && (bits_per_word % 16 == 0)) {
+/*
+ * Blackfin On-Chip SPI Driver
+ *
+ * Copyright 2004-2010 Analog Devices Inc.
+ *
+ * Enter bugs at http://blackfin.uclinux.org/
+ *
+ * Licensed under the GPL-2 or later.
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/slab.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/irq.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/spi/spi.h>
+#include <linux/workqueue.h>
+
+#include <asm/dma.h>
+#include <asm/portmux.h>
+#include <asm/bfin5xx_spi.h>
+#include <asm/cacheflush.h>
+
+#define DRV_NAME "bfin-spi"
+#define DRV_AUTHOR "Bryan Wu, Luke Yang"
+#define DRV_DESC "Blackfin on-chip SPI Controller Driver"
+#define DRV_VERSION "1.0"
+
+MODULE_AUTHOR(DRV_AUTHOR);
+MODULE_DESCRIPTION(DRV_DESC);
+MODULE_LICENSE("GPL");
+
+#define START_STATE ((void *)0)
+#define RUNNING_STATE ((void *)1)
+#define DONE_STATE ((void *)2)
+#define ERROR_STATE ((void *)-1)
+
+struct bfin_spi_master_data;
+
+struct bfin_spi_transfer_ops {
+ void (*write) (struct bfin_spi_master_data *);
+ void (*read) (struct bfin_spi_master_data *);
+ void (*duplex) (struct bfin_spi_master_data *);
+};
+
+struct bfin_spi_master_data {
+ /* Driver model hookup */
+ struct platform_device *pdev;
+
+ /* SPI framework hookup */
+ struct spi_master *master;
+
+ /* Regs base of SPI controller */
+ void __iomem *regs_base;
+
+ /* Pin request list */
+ u16 *pin_req;
+
+ /* BFIN hookup */
+ struct bfin5xx_spi_master *master_info;
+
+ /* Driver message queue */
+ struct workqueue_struct *workqueue;
+ struct work_struct pump_messages;
+ spinlock_t lock;
+ struct list_head queue;
+ int busy;
+ bool running;
+
+ /* Message Transfer pump */
+ struct tasklet_struct pump_transfers;
+
+ /* Current message transfer state info */
+ struct spi_message *cur_msg;
+ struct spi_transfer *cur_transfer;
+ struct bfin_spi_slave_data *cur_chip;
+ size_t len_in_bytes;
+ size_t len;
+ void *tx;
+ void *tx_end;
+ void *rx;
+ void *rx_end;
+
+ /* DMA stuffs */
+ int dma_channel;
+ int dma_mapped;
+ int dma_requested;
+ dma_addr_t rx_dma;
+ dma_addr_t tx_dma;
+
+ int irq_requested;
+ int spi_irq;
+
+ size_t rx_map_len;
+ size_t tx_map_len;
+ u8 n_bytes;
+ u16 ctrl_reg;
+ u16 flag_reg;
+
+ int cs_change;
+ const struct bfin_spi_transfer_ops *ops;
+};
+
+struct bfin_spi_slave_data {
+ u16 ctl_reg;
+ u16 baud;
+ u16 flag;
+
+ u8 chip_select_num;
+ u8 enable_dma;
+ u16 cs_chg_udelay; /* Some devices require > 255usec delay */
+ u32 cs_gpio;
+ u16 idle_tx_val;
+ u8 pio_interrupt; /* use spi data irq */
+ const struct bfin_spi_transfer_ops *ops;
+};
+
+#define DEFINE_SPI_REG(reg, off) \
+static inline u16 read_##reg(struct bfin_spi_master_data *drv_data) \
+ { return bfin_read16(drv_data->regs_base + off); } \
+static inline void write_##reg(struct bfin_spi_master_data *drv_data, u16 v) \
+ { bfin_write16(drv_data->regs_base + off, v); }
+
+DEFINE_SPI_REG(CTRL, 0x00)
+DEFINE_SPI_REG(FLAG, 0x04)
+DEFINE_SPI_REG(STAT, 0x08)
+DEFINE_SPI_REG(TDBR, 0x0C)
+DEFINE_SPI_REG(RDBR, 0x10)
+DEFINE_SPI_REG(BAUD, 0x14)
+DEFINE_SPI_REG(SHAW, 0x18)
+
+static void bfin_spi_enable(struct bfin_spi_master_data *drv_data)
+{
+ u16 cr;
+
+ cr = read_CTRL(drv_data);
+ write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
+}
+
+static void bfin_spi_disable(struct bfin_spi_master_data *drv_data)
+{
+ u16 cr;
+
+ cr = read_CTRL(drv_data);
+ write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
+}
+
+/* Caculate the SPI_BAUD register value based on input HZ */
+static u16 hz_to_spi_baud(u32 speed_hz)
+{
+ u_long sclk = get_sclk();
+ u16 spi_baud = (sclk / (2 * speed_hz));
+
+ if ((sclk % (2 * speed_hz)) > 0)
+ spi_baud++;
+
+ if (spi_baud < MIN_SPI_BAUD_VAL)
+ spi_baud = MIN_SPI_BAUD_VAL;
+
+ return spi_baud;
+}
+
+static int bfin_spi_flush(struct bfin_spi_master_data *drv_data)
+{
+ unsigned long limit = loops_per_jiffy << 1;
+
+ /* wait for stop and clear stat */
+ while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
+ cpu_relax();
+
+ write_STAT(drv_data, BIT_STAT_CLR);
+
+ return limit;
+}
+
+/* Chip select operation functions for cs_change flag */
+static void bfin_spi_cs_active(struct bfin_spi_master_data *drv_data, struct bfin_spi_slave_data *chip)
+{
+ if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
+ u16 flag = read_FLAG(drv_data);
+
+ flag &= ~chip->flag;
+
+ write_FLAG(drv_data, flag);
+ } else {
+ gpio_set_value(chip->cs_gpio, 0);
+ }
+}
+
+static void bfin_spi_cs_deactive(struct bfin_spi_master_data *drv_data,
+ struct bfin_spi_slave_data *chip)
+{
+ if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
+ u16 flag = read_FLAG(drv_data);
+
+ flag |= chip->flag;
+
+ write_FLAG(drv_data, flag);
+ } else {
+ gpio_set_value(chip->cs_gpio, 1);
+ }
+
+ /* Move delay here for consistency */
+ if (chip->cs_chg_udelay)
+ udelay(chip->cs_chg_udelay);
+}
+
+/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
+static inline void bfin_spi_cs_enable(struct bfin_spi_master_data *drv_data,
+ struct bfin_spi_slave_data *chip)
+{
+ if (chip->chip_select_num < MAX_CTRL_CS) {
+ u16 flag = read_FLAG(drv_data);
+
+ flag |= (chip->flag >> 8);
+
+ write_FLAG(drv_data, flag);
+ }
+}
+
+static inline void bfin_spi_cs_disable(struct bfin_spi_master_data *drv_data,
+ struct bfin_spi_slave_data *chip)
+{
+ if (chip->chip_select_num < MAX_CTRL_CS) {
+ u16 flag = read_FLAG(drv_data);
+
+ flag &= ~(chip->flag >> 8);
+
+ write_FLAG(drv_data, flag);
+ }
+}
+
+/* stop controller and re-config current chip*/
+static void bfin_spi_restore_state(struct bfin_spi_master_data *drv_data)
+{
+ struct bfin_spi_slave_data *chip = drv_data->cur_chip;
+
+ /* Clear status and disable clock */
+ write_STAT(drv_data, BIT_STAT_CLR);
+ bfin_spi_disable(drv_data);
+ dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
+
+ SSYNC();
+
+ /* Load the registers */
+ write_CTRL(drv_data, chip->ctl_reg);
+ write_BAUD(drv_data, chip->baud);
+
+ bfin_spi_enable(drv_data);
+ bfin_spi_cs_active(drv_data, chip);
+}
+
+/* used to kick off transfer in rx mode and read unwanted RX data */
+static inline void bfin_spi_dummy_read(struct bfin_spi_master_data *drv_data)
+{
+ (void) read_RDBR(drv_data);
+}
+
+static void bfin_spi_u8_writer(struct bfin_spi_master_data *drv_data)
+{
+ /* clear RXS (we check for RXS inside the loop) */
+ bfin_spi_dummy_read(drv_data);
+
+ while (drv_data->tx < drv_data->tx_end) {
+ write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
+ /* wait until transfer finished.
+ checking SPIF or TXS may not guarantee transfer completion */
+ while (!(read_STAT(drv_data) & BIT_STAT_RXS))
+ cpu_relax();
+ /* discard RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+ }
+}
+
+static void bfin_spi_u8_reader(struct bfin_spi_master_data *drv_data)
+{
+ u16 tx_val = drv_data->cur_chip->idle_tx_val;
+
+ /* discard old RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+
+ while (drv_data->rx < drv_data->rx_end) {
+ write_TDBR(drv_data, tx_val);
+ while (!(read_STAT(drv_data) & BIT_STAT_RXS))
+ cpu_relax();
+ *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
+ }
+}
+
+static void bfin_spi_u8_duplex(struct bfin_spi_master_data *drv_data)
+{
+ /* discard old RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+
+ while (drv_data->rx < drv_data->rx_end) {
+ write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
+ while (!(read_STAT(drv_data) & BIT_STAT_RXS))
+ cpu_relax();
+ *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
+ }
+}
+
+static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
+ .write = bfin_spi_u8_writer,
+ .read = bfin_spi_u8_reader,
+ .duplex = bfin_spi_u8_duplex,
+};
+
+static void bfin_spi_u16_writer(struct bfin_spi_master_data *drv_data)
+{
+ /* clear RXS (we check for RXS inside the loop) */
+ bfin_spi_dummy_read(drv_data);
+
+ while (drv_data->tx < drv_data->tx_end) {
+ write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
+ drv_data->tx += 2;
+ /* wait until transfer finished.
+ checking SPIF or TXS may not guarantee transfer completion */
+ while (!(read_STAT(drv_data) & BIT_STAT_RXS))
+ cpu_relax();
+ /* discard RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+ }
+}
+
+static void bfin_spi_u16_reader(struct bfin_spi_master_data *drv_data)
+{
+ u16 tx_val = drv_data->cur_chip->idle_tx_val;
+
+ /* discard old RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+
+ while (drv_data->rx < drv_data->rx_end) {
+ write_TDBR(drv_data, tx_val);
+ while (!(read_STAT(drv_data) & BIT_STAT_RXS))
+ cpu_relax();
+ *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
+ drv_data->rx += 2;
+ }
+}
+
+static void bfin_spi_u16_duplex(struct bfin_spi_master_data *drv_data)
+{
+ /* discard old RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+
+ while (drv_data->rx < drv_data->rx_end) {
+ write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
+ drv_data->tx += 2;
+ while (!(read_STAT(drv_data) & BIT_STAT_RXS))
+ cpu_relax();
+ *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
+ drv_data->rx += 2;
+ }
+}
+
+static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
+ .write = bfin_spi_u16_writer,
+ .read = bfin_spi_u16_reader,
+ .duplex = bfin_spi_u16_duplex,
+};
+
+/* test if there is more transfer to be done */
+static void *bfin_spi_next_transfer(struct bfin_spi_master_data *drv_data)
+{
+ struct spi_message *msg = drv_data->cur_msg;
+ struct spi_transfer *trans = drv_data->cur_transfer;
+
+ /* Move to next transfer */
+ if (trans->transfer_list.next != &msg->transfers) {
+ drv_data->cur_transfer =
+ list_entry(trans->transfer_list.next,
+ struct spi_transfer, transfer_list);
+ return RUNNING_STATE;
+ } else
+ return DONE_STATE;
+}
+
+/*
+ * caller already set message->status;
+ * dma and pio irqs are blocked give finished message back
+ */
+static void bfin_spi_giveback(struct bfin_spi_master_data *drv_data)
+{
+ struct bfin_spi_slave_data *chip = drv_data->cur_chip;
+ struct spi_transfer *last_transfer;
+ unsigned long flags;
+ struct spi_message *msg;
+
+ spin_lock_irqsave(&drv_data->lock, flags);
+ msg = drv_data->cur_msg;
+ drv_data->cur_msg = NULL;
+ drv_data->cur_transfer = NULL;
+ drv_data->cur_chip = NULL;
+ queue_work(drv_data->workqueue, &drv_data->pump_messages);
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+
+ last_transfer = list_entry(msg->transfers.prev,
+ struct spi_transfer, transfer_list);
+
+ msg->state = NULL;
+
+ if (!drv_data->cs_change)
+ bfin_spi_cs_deactive(drv_data, chip);
+
+ /* Not stop spi in autobuffer mode */
+ if (drv_data->tx_dma != 0xFFFF)
+ bfin_spi_disable(drv_data);
+
+ if (msg->complete)
+ msg->complete(msg->context);
+}
+
+/* spi data irq handler */
+static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
+{
+ struct bfin_spi_master_data *drv_data = dev_id;
+ struct bfin_spi_slave_data *chip = drv_data->cur_chip;
+ struct spi_message *msg = drv_data->cur_msg;
+ int n_bytes = drv_data->n_bytes;
+ int loop = 0;
+
+ /* wait until transfer finished. */
+ while (!(read_STAT(drv_data) & BIT_STAT_RXS))
+ cpu_relax();
+
+ if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
+ (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
+ /* last read */
+ if (drv_data->rx) {
+ dev_dbg(&drv_data->pdev->dev, "last read\n");
+ if (n_bytes % 2) {
+ u16 *buf = (u16 *)drv_data->rx;
+ for (loop = 0; loop < n_bytes / 2; loop++)
+ *buf++ = read_RDBR(drv_data);
+ } else {
+ u8 *buf = (u8 *)drv_data->rx;
+ for (loop = 0; loop < n_bytes; loop++)
+ *buf++ = read_RDBR(drv_data);
+ }
+ drv_data->rx += n_bytes;
+ }
+
+ msg->actual_length += drv_data->len_in_bytes;
+ if (drv_data->cs_change)
+ bfin_spi_cs_deactive(drv_data, chip);
+ /* Move to next transfer */
+ msg->state = bfin_spi_next_transfer(drv_data);
+
+ disable_irq_nosync(drv_data->spi_irq);
+
+ /* Schedule transfer tasklet */
+ tasklet_schedule(&drv_data->pump_transfers);
+ return IRQ_HANDLED;
+ }
+
+ if (drv_data->rx && drv_data->tx) {
+ /* duplex */
+ dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
+ if (n_bytes % 2) {
+ u16 *buf = (u16 *)drv_data->rx;
+ u16 *buf2 = (u16 *)drv_data->tx;
+ for (loop = 0; loop < n_bytes / 2; loop++) {
+ *buf++ = read_RDBR(drv_data);
+ write_TDBR(drv_data, *buf2++);
+ }
+ } else {
+ u8 *buf = (u8 *)drv_data->rx;
+ u8 *buf2 = (u8 *)drv_data->tx;
+ for (loop = 0; loop < n_bytes; loop++) {
+ *buf++ = read_RDBR(drv_data);
+ write_TDBR(drv_data, *buf2++);
+ }
+ }
+ } else if (drv_data->rx) {
+ /* read */
+ dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
+ if (n_bytes % 2) {
+ u16 *buf = (u16 *)drv_data->rx;
+ for (loop = 0; loop < n_bytes / 2; loop++) {
+ *buf++ = read_RDBR(drv_data);
+ write_TDBR(drv_data, chip->idle_tx_val);
+ }
+ } else {
+ u8 *buf = (u8 *)drv_data->rx;
+ for (loop = 0; loop < n_bytes; loop++) {
+ *buf++ = read_RDBR(drv_data);
+ write_TDBR(drv_data, chip->idle_tx_val);
+ }
+ }
+ } else if (drv_data->tx) {
+ /* write */
+ dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
+ if (n_bytes % 2) {
+ u16 *buf = (u16 *)drv_data->tx;
+ for (loop = 0; loop < n_bytes / 2; loop++) {
+ read_RDBR(drv_data);
+ write_TDBR(drv_data, *buf++);
+ }
+ } else {
+ u8 *buf = (u8 *)drv_data->tx;
+ for (loop = 0; loop < n_bytes; loop++) {
+ read_RDBR(drv_data);
+ write_TDBR(drv_data, *buf++);
+ }
+ }
+ }
+
+ if (drv_data->tx)
+ drv_data->tx += n_bytes;
+ if (drv_data->rx)
+ drv_data->rx += n_bytes;
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
+{
+ struct bfin_spi_master_data *drv_data = dev_id;
+ struct bfin_spi_slave_data *chip = drv_data->cur_chip;
+ struct spi_message *msg = drv_data->cur_msg;
+ unsigned long timeout;
+ unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
+ u16 spistat = read_STAT(drv_data);
+
+ dev_dbg(&drv_data->pdev->dev,
+ "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
+ dmastat, spistat);
+
+ if (drv_data->rx != NULL) {
+ u16 cr = read_CTRL(drv_data);
+ /* discard old RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+ write_CTRL(drv_data, cr & ~BIT_CTL_ENABLE); /* Disable SPI */
+ write_CTRL(drv_data, cr & ~BIT_CTL_TIMOD); /* Restore State */
+ write_STAT(drv_data, BIT_STAT_CLR); /* Clear Status */
+ }
+
+ clear_dma_irqstat(drv_data->dma_channel);
+
+ /*
+ * wait for the last transaction shifted out. HRM states:
+ * at this point there may still be data in the SPI DMA FIFO waiting
+ * to be transmitted ... software needs to poll TXS in the SPI_STAT
+ * register until it goes low for 2 successive reads
+ */
+ if (drv_data->tx != NULL) {
+ while ((read_STAT(drv_data) & BIT_STAT_TXS) ||
+ (read_STAT(drv_data) & BIT_STAT_TXS))
+ cpu_relax();
+ }
+
+ dev_dbg(&drv_data->pdev->dev,
+ "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
+ dmastat, read_STAT(drv_data));
+
+ timeout = jiffies + HZ;
+ while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
+ if (!time_before(jiffies, timeout)) {
+ dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
+ break;
+ } else
+ cpu_relax();
+
+ if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
+ msg->state = ERROR_STATE;
+ dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
+ } else {
+ msg->actual_length += drv_data->len_in_bytes;
+
+ if (drv_data->cs_change)
+ bfin_spi_cs_deactive(drv_data, chip);
+
+ /* Move to next transfer */
+ msg->state = bfin_spi_next_transfer(drv_data);
+ }
+
+ /* Schedule transfer tasklet */
+ tasklet_schedule(&drv_data->pump_transfers);
+
+ /* free the irq handler before next transfer */
+ dev_dbg(&drv_data->pdev->dev,
+ "disable dma channel irq%d\n",
+ drv_data->dma_channel);
+ dma_disable_irq_nosync(drv_data->dma_channel);
+
+ return IRQ_HANDLED;
+}
+
+static void bfin_spi_pump_transfers(unsigned long data)
+{
+ struct bfin_spi_master_data *drv_data = (struct bfin_spi_master_data *)data;
+ struct spi_message *message = NULL;
+ struct spi_transfer *transfer = NULL;
+ struct spi_transfer *previous = NULL;
+ struct bfin_spi_slave_data *chip = NULL;
+ unsigned int bits_per_word;
+ u16 cr, cr_width, dma_width, dma_config;
+ u32 tranf_success = 1;
+ u8 full_duplex = 0;
+
+ /* Get current state information */
+ message = drv_data->cur_msg;
+ transfer = drv_data->cur_transfer;
+ chip = drv_data->cur_chip;
+
+ /*
+ * if msg is error or done, report it back using complete() callback
+ */
+
+ /* Handle for abort */
+ if (message->state == ERROR_STATE) {
+ dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
+ message->status = -EIO;
+ bfin_spi_giveback(drv_data);
+ return;
+ }
+
+ /* Handle end of message */
+ if (message->state == DONE_STATE) {
+ dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
+ message->status = 0;
+ bfin_spi_giveback(drv_data);
+ return;
+ }
+
+ /* Delay if requested at end of transfer */
+ if (message->state == RUNNING_STATE) {
+ dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
+ previous = list_entry(transfer->transfer_list.prev,
+ struct spi_transfer, transfer_list);
+ if (previous->delay_usecs)
+ udelay(previous->delay_usecs);
+ }
+
+ /* Flush any existing transfers that may be sitting in the hardware */
+ if (bfin_spi_flush(drv_data) == 0) {
+ dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
+ message->status = -EIO;
+ bfin_spi_giveback(drv_data);
+ return;
+ }
+
+ if (transfer->len == 0) {
+ /* Move to next transfer of this msg */
+ message->state = bfin_spi_next_transfer(drv_data);
+ /* Schedule next transfer tasklet */
+ tasklet_schedule(&drv_data->pump_transfers);
+ return;
+ }
+
+ if (transfer->tx_buf != NULL) {
+ drv_data->tx = (void *)transfer->tx_buf;
+ drv_data->tx_end = drv_data->tx + transfer->len;
+ dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
+ transfer->tx_buf, drv_data->tx_end);
+ } else {
+ drv_data->tx = NULL;
+ }
+
+ if (transfer->rx_buf != NULL) {
+ full_duplex = transfer->tx_buf != NULL;
+ drv_data->rx = transfer->rx_buf;
+ drv_data->rx_end = drv_data->rx + transfer->len;
+ dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
+ transfer->rx_buf, drv_data->rx_end);
+ } else {
+ drv_data->rx = NULL;
+ }
+
+ drv_data->rx_dma = transfer->rx_dma;
+ drv_data->tx_dma = transfer->tx_dma;
+ drv_data->len_in_bytes = transfer->len;
+ drv_data->cs_change = transfer->cs_change;
+
+ /* Bits per word setup */
- } else if ((bits_per_word > 0) && (bits_per_word % 8 == 0)) {
++ bits_per_word = transfer->bits_per_word ? :
++ message->spi->bits_per_word ? : 8;
++ if (bits_per_word % 16 == 0) {
+ drv_data->n_bytes = bits_per_word/8;
+ drv_data->len = (transfer->len) >> 1;
+ cr_width = BIT_CTL_WORDSIZE;
+ drv_data->ops = &bfin_bfin_spi_transfer_ops_u16;
++ } else if (bits_per_word % 8 == 0) {
+ drv_data->n_bytes = bits_per_word/8;
+ drv_data->len = transfer->len;
+ cr_width = 0;
+ drv_data->ops = &bfin_bfin_spi_transfer_ops_u8;
+ } else {
+ dev_err(&drv_data->pdev->dev, "transfer: unsupported bits_per_word\n");
+ message->status = -EINVAL;
+ bfin_spi_giveback(drv_data);
+ return;
+ }
+ cr = read_CTRL(drv_data) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
+ cr |= cr_width;
+ write_CTRL(drv_data, cr);
+
+ dev_dbg(&drv_data->pdev->dev,
+ "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
+ drv_data->ops, chip->ops, &bfin_bfin_spi_transfer_ops_u8);
+
+ message->state = RUNNING_STATE;
+ dma_config = 0;
+
+ /* Speed setup (surely valid because already checked) */
+ if (transfer->speed_hz)
+ write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
+ else
+ write_BAUD(drv_data, chip->baud);
+
+ write_STAT(drv_data, BIT_STAT_CLR);
+ bfin_spi_cs_active(drv_data, chip);
+
+ dev_dbg(&drv_data->pdev->dev,
+ "now pumping a transfer: width is %d, len is %d\n",
+ cr_width, transfer->len);
+
+ /*
+ * Try to map dma buffer and do a dma transfer. If successful use,
+ * different way to r/w according to the enable_dma settings and if
+ * we are not doing a full duplex transfer (since the hardware does
+ * not support full duplex DMA transfers).
+ */
+ if (!full_duplex && drv_data->cur_chip->enable_dma
+ && drv_data->len > 6) {
+
+ unsigned long dma_start_addr, flags;
+
+ disable_dma(drv_data->dma_channel);
+ clear_dma_irqstat(drv_data->dma_channel);
+
+ /* config dma channel */
+ dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
+ set_dma_x_count(drv_data->dma_channel, drv_data->len);
+ if (cr_width == BIT_CTL_WORDSIZE) {
+ set_dma_x_modify(drv_data->dma_channel, 2);
+ dma_width = WDSIZE_16;
+ } else {
+ set_dma_x_modify(drv_data->dma_channel, 1);
+ dma_width = WDSIZE_8;
+ }
+
+ /* poll for SPI completion before start */
+ while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
+ cpu_relax();
+
+ /* dirty hack for autobuffer DMA mode */
+ if (drv_data->tx_dma == 0xFFFF) {
+ dev_dbg(&drv_data->pdev->dev,
+ "doing autobuffer DMA out.\n");
+
+ /* no irq in autobuffer mode */
+ dma_config =
+ (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
+ set_dma_config(drv_data->dma_channel, dma_config);
+ set_dma_start_addr(drv_data->dma_channel,
+ (unsigned long)drv_data->tx);
+ enable_dma(drv_data->dma_channel);
+
+ /* start SPI transfer */
+ write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
+
+ /* just return here, there can only be one transfer
+ * in this mode
+ */
+ message->status = 0;
+ bfin_spi_giveback(drv_data);
+ return;
+ }
+
+ /* In dma mode, rx or tx must be NULL in one transfer */
+ dma_config = (RESTART | dma_width | DI_EN);
+ if (drv_data->rx != NULL) {
+ /* set transfer mode, and enable SPI */
+ dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
+ drv_data->rx, drv_data->len_in_bytes);
+
+ /* invalidate caches, if needed */
+ if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
+ invalidate_dcache_range((unsigned long) drv_data->rx,
+ (unsigned long) (drv_data->rx +
+ drv_data->len_in_bytes));
+
+ dma_config |= WNR;
+ dma_start_addr = (unsigned long)drv_data->rx;
+ cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
+
+ } else if (drv_data->tx != NULL) {
+ dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
+
+ /* flush caches, if needed */
+ if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
+ flush_dcache_range((unsigned long) drv_data->tx,
+ (unsigned long) (drv_data->tx +
+ drv_data->len_in_bytes));
+
+ dma_start_addr = (unsigned long)drv_data->tx;
+ cr |= BIT_CTL_TIMOD_DMA_TX;
+
+ } else
+ BUG();
+
+ /* oh man, here there be monsters ... and i dont mean the
+ * fluffy cute ones from pixar, i mean the kind that'll eat
+ * your data, kick your dog, and love it all. do *not* try
+ * and change these lines unless you (1) heavily test DMA
+ * with SPI flashes on a loaded system (e.g. ping floods),
+ * (2) know just how broken the DMA engine interaction with
+ * the SPI peripheral is, and (3) have someone else to blame
+ * when you screw it all up anyways.
+ */
+ set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
+ set_dma_config(drv_data->dma_channel, dma_config);
+ local_irq_save(flags);
+ SSYNC();
+ write_CTRL(drv_data, cr);
+ enable_dma(drv_data->dma_channel);
+ dma_enable_irq(drv_data->dma_channel);
+ local_irq_restore(flags);
+
+ return;
+ }
+
+ /*
+ * We always use SPI_WRITE mode (transfer starts with TDBR write).
+ * SPI_READ mode (transfer starts with RDBR read) seems to have
+ * problems with setting up the output value in TDBR prior to the
+ * start of the transfer.
+ */
+ write_CTRL(drv_data, cr | BIT_CTL_TXMOD);
+
+ if (chip->pio_interrupt) {
+ /* SPI irq should have been disabled by now */
+
+ /* discard old RX data and clear RXS */
+ bfin_spi_dummy_read(drv_data);
+
+ /* start transfer */
+ if (drv_data->tx == NULL)
+ write_TDBR(drv_data, chip->idle_tx_val);
+ else {
+ int loop;
+ if (bits_per_word % 16 == 0) {
+ u16 *buf = (u16 *)drv_data->tx;
+ for (loop = 0; loop < bits_per_word / 16;
+ loop++) {
+ write_TDBR(drv_data, *buf++);
+ }
+ } else if (bits_per_word % 8 == 0) {
+ u8 *buf = (u8 *)drv_data->tx;
+ for (loop = 0; loop < bits_per_word / 8; loop++)
+ write_TDBR(drv_data, *buf++);
+ }
+
+ drv_data->tx += drv_data->n_bytes;
+ }
+
+ /* once TDBR is empty, interrupt is triggered */
+ enable_irq(drv_data->spi_irq);
+ return;
+ }
+
+ /* IO mode */
+ dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
+
+ if (full_duplex) {
+ /* full duplex mode */
+ BUG_ON((drv_data->tx_end - drv_data->tx) !=
+ (drv_data->rx_end - drv_data->rx));
+ dev_dbg(&drv_data->pdev->dev,
+ "IO duplex: cr is 0x%x\n", cr);
+
+ drv_data->ops->duplex(drv_data);
+
+ if (drv_data->tx != drv_data->tx_end)
+ tranf_success = 0;
+ } else if (drv_data->tx != NULL) {
+ /* write only half duplex */
+ dev_dbg(&drv_data->pdev->dev,
+ "IO write: cr is 0x%x\n", cr);
+
+ drv_data->ops->write(drv_data);
+
+ if (drv_data->tx != drv_data->tx_end)
+ tranf_success = 0;
+ } else if (drv_data->rx != NULL) {
+ /* read only half duplex */
+ dev_dbg(&drv_data->pdev->dev,
+ "IO read: cr is 0x%x\n", cr);
+
+ drv_data->ops->read(drv_data);
+ if (drv_data->rx != drv_data->rx_end)
+ tranf_success = 0;
+ }
+
+ if (!tranf_success) {
+ dev_dbg(&drv_data->pdev->dev,
+ "IO write error!\n");
+ message->state = ERROR_STATE;
+ } else {
+ /* Update total byte transferred */
+ message->actual_length += drv_data->len_in_bytes;
+ /* Move to next transfer of this msg */
+ message->state = bfin_spi_next_transfer(drv_data);
+ if (drv_data->cs_change)
+ bfin_spi_cs_deactive(drv_data, chip);
+ }
+
+ /* Schedule next transfer tasklet */
+ tasklet_schedule(&drv_data->pump_transfers);
+}
+
+/* pop a msg from queue and kick off real transfer */
+static void bfin_spi_pump_messages(struct work_struct *work)
+{
+ struct bfin_spi_master_data *drv_data;
+ unsigned long flags;
+
+ drv_data = container_of(work, struct bfin_spi_master_data, pump_messages);
+
+ /* Lock queue and check for queue work */
+ spin_lock_irqsave(&drv_data->lock, flags);
+ if (list_empty(&drv_data->queue) || !drv_data->running) {
+ /* pumper kicked off but no work to do */
+ drv_data->busy = 0;
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+ return;
+ }
+
+ /* Make sure we are not already running a message */
+ if (drv_data->cur_msg) {
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+ return;
+ }
+
+ /* Extract head of queue */
+ drv_data->cur_msg = list_entry(drv_data->queue.next,
+ struct spi_message, queue);
+
+ /* Setup the SSP using the per chip configuration */
+ drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
+ bfin_spi_restore_state(drv_data);
+
+ list_del_init(&drv_data->cur_msg->queue);
+
+ /* Initial message state */
+ drv_data->cur_msg->state = START_STATE;
+ drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
+ struct spi_transfer, transfer_list);
+
+ dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
+ "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
+ drv_data->cur_chip->baud, drv_data->cur_chip->flag,
+ drv_data->cur_chip->ctl_reg);
+
+ dev_dbg(&drv_data->pdev->dev,
+ "the first transfer len is %d\n",
+ drv_data->cur_transfer->len);
+
+ /* Mark as busy and launch transfers */
+ tasklet_schedule(&drv_data->pump_transfers);
+
+ drv_data->busy = 1;
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+}
+
+/*
+ * got a msg to transfer, queue it in drv_data->queue.
+ * And kick off message pumper
+ */
+static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
+{
+ struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
+ unsigned long flags;
+
+ spin_lock_irqsave(&drv_data->lock, flags);
+
+ if (!drv_data->running) {
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+ return -ESHUTDOWN;
+ }
+
+ msg->actual_length = 0;
+ msg->status = -EINPROGRESS;
+ msg->state = START_STATE;
+
+ dev_dbg(&spi->dev, "adding an msg in transfer() \n");
+ list_add_tail(&msg->queue, &drv_data->queue);
+
+ if (drv_data->running && !drv_data->busy)
+ queue_work(drv_data->workqueue, &drv_data->pump_messages);
+
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+
+ return 0;
+}
+
+#define MAX_SPI_SSEL 7
+
+static u16 ssel[][MAX_SPI_SSEL] = {
+ {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
+ P_SPI0_SSEL4, P_SPI0_SSEL5,
+ P_SPI0_SSEL6, P_SPI0_SSEL7},
+
+ {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
+ P_SPI1_SSEL4, P_SPI1_SSEL5,
+ P_SPI1_SSEL6, P_SPI1_SSEL7},
+
+ {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
+ P_SPI2_SSEL4, P_SPI2_SSEL5,
+ P_SPI2_SSEL6, P_SPI2_SSEL7},
+};
+
+/* setup for devices (may be called multiple times -- not just first setup) */
+static int bfin_spi_setup(struct spi_device *spi)
+{
+ struct bfin5xx_spi_chip *chip_info;
+ struct bfin_spi_slave_data *chip = NULL;
+ struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
+ u16 bfin_ctl_reg;
+ int ret = -EINVAL;
+
+ /* Only alloc (or use chip_info) on first setup */
+ chip_info = NULL;
+ chip = spi_get_ctldata(spi);
+ if (chip == NULL) {
+ chip = kzalloc(sizeof(*chip), GFP_KERNEL);
+ if (!chip) {
+ dev_err(&spi->dev, "cannot allocate chip data\n");
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ chip->enable_dma = 0;
+ chip_info = spi->controller_data;
+ }
+
+ /* Let people set non-standard bits directly */
+ bfin_ctl_reg = BIT_CTL_OPENDRAIN | BIT_CTL_EMISO |
+ BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ;
+
+ /* chip_info isn't always needed */
+ if (chip_info) {
+ /* Make sure people stop trying to set fields via ctl_reg
+ * when they should actually be using common SPI framework.
+ * Currently we let through: WOM EMISO PSSE GM SZ.
+ * Not sure if a user actually needs/uses any of these,
+ * but let's assume (for now) they do.
+ */
+ if (chip_info->ctl_reg & ~bfin_ctl_reg) {
+ dev_err(&spi->dev, "do not set bits in ctl_reg "
+ "that the SPI framework manages\n");
+ goto error;
+ }
+ chip->enable_dma = chip_info->enable_dma != 0
+ && drv_data->master_info->enable_dma;
+ chip->ctl_reg = chip_info->ctl_reg;
+ chip->cs_chg_udelay = chip_info->cs_chg_udelay;
+ chip->idle_tx_val = chip_info->idle_tx_val;
+ chip->pio_interrupt = chip_info->pio_interrupt;
+ spi->bits_per_word = chip_info->bits_per_word;
+ } else {
+ /* force a default base state */
+ chip->ctl_reg &= bfin_ctl_reg;
+ }
+
+ if (spi->bits_per_word % 8) {
+ dev_err(&spi->dev, "%d bits_per_word is not supported\n",
+ spi->bits_per_word);
+ goto error;
+ }
+
+ /* translate common spi framework into our register */
+ if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
+ dev_err(&spi->dev, "unsupported spi modes detected\n");
+ goto error;
+ }
+ if (spi->mode & SPI_CPOL)
+ chip->ctl_reg |= BIT_CTL_CPOL;
+ if (spi->mode & SPI_CPHA)
+ chip->ctl_reg |= BIT_CTL_CPHA;
+ if (spi->mode & SPI_LSB_FIRST)
+ chip->ctl_reg |= BIT_CTL_LSBF;
+ /* we dont support running in slave mode (yet?) */
+ chip->ctl_reg |= BIT_CTL_MASTER;
+
+ /*
+ * Notice: for blackfin, the speed_hz is the value of register
+ * SPI_BAUD, not the real baudrate
+ */
+ chip->baud = hz_to_spi_baud(spi->max_speed_hz);
+ chip->chip_select_num = spi->chip_select;
+ if (chip->chip_select_num < MAX_CTRL_CS) {
+ if (!(spi->mode & SPI_CPHA))
+ dev_warn(&spi->dev, "Warning: SPI CPHA not set:"
+ " Slave Select not under software control!\n"
+ " See Documentation/blackfin/bfin-spi-notes.txt");
+
+ chip->flag = (1 << spi->chip_select) << 8;
+ } else
+ chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
+
+ if (chip->enable_dma && chip->pio_interrupt) {
+ dev_err(&spi->dev, "enable_dma is set, "
+ "do not set pio_interrupt\n");
+ goto error;
+ }
+ /*
+ * if any one SPI chip is registered and wants DMA, request the
+ * DMA channel for it
+ */
+ if (chip->enable_dma && !drv_data->dma_requested) {
+ /* register dma irq handler */
+ ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
+ if (ret) {
+ dev_err(&spi->dev,
+ "Unable to request BlackFin SPI DMA channel\n");
+ goto error;
+ }
+ drv_data->dma_requested = 1;
+
+ ret = set_dma_callback(drv_data->dma_channel,
+ bfin_spi_dma_irq_handler, drv_data);
+ if (ret) {
+ dev_err(&spi->dev, "Unable to set dma callback\n");
+ goto error;
+ }
+ dma_disable_irq(drv_data->dma_channel);
+ }
+
+ if (chip->pio_interrupt && !drv_data->irq_requested) {
+ ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
+ IRQF_DISABLED, "BFIN_SPI", drv_data);
+ if (ret) {
+ dev_err(&spi->dev, "Unable to register spi IRQ\n");
+ goto error;
+ }
+ drv_data->irq_requested = 1;
+ /* we use write mode, spi irq has to be disabled here */
+ disable_irq(drv_data->spi_irq);
+ }
+
+ if (chip->chip_select_num >= MAX_CTRL_CS) {
+ /* Only request on first setup */
+ if (spi_get_ctldata(spi) == NULL) {
+ ret = gpio_request(chip->cs_gpio, spi->modalias);
+ if (ret) {
+ dev_err(&spi->dev, "gpio_request() error\n");
+ goto pin_error;
+ }
+ gpio_direction_output(chip->cs_gpio, 1);
+ }
+ }
+
+ dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
+ spi->modalias, spi->bits_per_word, chip->enable_dma);
+ dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
+ chip->ctl_reg, chip->flag);
+
+ spi_set_ctldata(spi, chip);
+
+ dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
+ if (chip->chip_select_num < MAX_CTRL_CS) {
+ ret = peripheral_request(ssel[spi->master->bus_num]
+ [chip->chip_select_num-1], spi->modalias);
+ if (ret) {
+ dev_err(&spi->dev, "peripheral_request() error\n");
+ goto pin_error;
+ }
+ }
+
+ bfin_spi_cs_enable(drv_data, chip);
+ bfin_spi_cs_deactive(drv_data, chip);
+
+ return 0;
+
+ pin_error:
+ if (chip->chip_select_num >= MAX_CTRL_CS)
+ gpio_free(chip->cs_gpio);
+ else
+ peripheral_free(ssel[spi->master->bus_num]
+ [chip->chip_select_num - 1]);
+ error:
+ if (chip) {
+ if (drv_data->dma_requested)
+ free_dma(drv_data->dma_channel);
+ drv_data->dma_requested = 0;
+
+ kfree(chip);
+ /* prevent free 'chip' twice */
+ spi_set_ctldata(spi, NULL);
+ }
+
+ return ret;
+}
+
+/*
+ * callback for spi framework.
+ * clean driver specific data
+ */
+static void bfin_spi_cleanup(struct spi_device *spi)
+{
+ struct bfin_spi_slave_data *chip = spi_get_ctldata(spi);
+ struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
+
+ if (!chip)
+ return;
+
+ if (chip->chip_select_num < MAX_CTRL_CS) {
+ peripheral_free(ssel[spi->master->bus_num]
+ [chip->chip_select_num-1]);
+ bfin_spi_cs_disable(drv_data, chip);
+ } else
+ gpio_free(chip->cs_gpio);
+
+ kfree(chip);
+ /* prevent free 'chip' twice */
+ spi_set_ctldata(spi, NULL);
+}
+
+static inline int bfin_spi_init_queue(struct bfin_spi_master_data *drv_data)
+{
+ INIT_LIST_HEAD(&drv_data->queue);
+ spin_lock_init(&drv_data->lock);
+
+ drv_data->running = false;
+ drv_data->busy = 0;
+
+ /* init transfer tasklet */
+ tasklet_init(&drv_data->pump_transfers,
+ bfin_spi_pump_transfers, (unsigned long)drv_data);
+
+ /* init messages workqueue */
+ INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
+ drv_data->workqueue = create_singlethread_workqueue(
+ dev_name(drv_data->master->dev.parent));
+ if (drv_data->workqueue == NULL)
+ return -EBUSY;
+
+ return 0;
+}
+
+static inline int bfin_spi_start_queue(struct bfin_spi_master_data *drv_data)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&drv_data->lock, flags);
+
+ if (drv_data->running || drv_data->busy) {
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+ return -EBUSY;
+ }
+
+ drv_data->running = true;
+ drv_data->cur_msg = NULL;
+ drv_data->cur_transfer = NULL;
+ drv_data->cur_chip = NULL;
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+
+ queue_work(drv_data->workqueue, &drv_data->pump_messages);
+
+ return 0;
+}
+
+static inline int bfin_spi_stop_queue(struct bfin_spi_master_data *drv_data)
+{
+ unsigned long flags;
+ unsigned limit = 500;
+ int status = 0;
+
+ spin_lock_irqsave(&drv_data->lock, flags);
+
+ /*
+ * This is a bit lame, but is optimized for the common execution path.
+ * A wait_queue on the drv_data->busy could be used, but then the common
+ * execution path (pump_messages) would be required to call wake_up or
+ * friends on every SPI message. Do this instead
+ */
+ drv_data->running = false;
+ while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+ msleep(10);
+ spin_lock_irqsave(&drv_data->lock, flags);
+ }
+
+ if (!list_empty(&drv_data->queue) || drv_data->busy)
+ status = -EBUSY;
+
+ spin_unlock_irqrestore(&drv_data->lock, flags);
+
+ return status;
+}
+
+static inline int bfin_spi_destroy_queue(struct bfin_spi_master_data *drv_data)
+{
+ int status;
+
+ status = bfin_spi_stop_queue(drv_data);
+ if (status != 0)
+ return status;
+
+ destroy_workqueue(drv_data->workqueue);
+
+ return 0;
+}
+
+static int __init bfin_spi_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct bfin5xx_spi_master *platform_info;
+ struct spi_master *master;
+ struct bfin_spi_master_data *drv_data;
+ struct resource *res;
+ int status = 0;
+
+ platform_info = dev->platform_data;
+
+ /* Allocate master with space for drv_data */
+ master = spi_alloc_master(dev, sizeof(*drv_data));
+ if (!master) {
+ dev_err(&pdev->dev, "can not alloc spi_master\n");
+ return -ENOMEM;
+ }
+
+ drv_data = spi_master_get_devdata(master);
+ drv_data->master = master;
+ drv_data->master_info = platform_info;
+ drv_data->pdev = pdev;
+ drv_data->pin_req = platform_info->pin_req;
+
+ /* the spi->mode bits supported by this driver: */
+ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
+
+ master->bus_num = pdev->id;
+ master->num_chipselect = platform_info->num_chipselect;
+ master->cleanup = bfin_spi_cleanup;
+ master->setup = bfin_spi_setup;
+ master->transfer = bfin_spi_transfer;
+
+ /* Find and map our resources */
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (res == NULL) {
+ dev_err(dev, "Cannot get IORESOURCE_MEM\n");
+ status = -ENOENT;
+ goto out_error_get_res;
+ }
+
+ drv_data->regs_base = ioremap(res->start, resource_size(res));
+ if (drv_data->regs_base == NULL) {
+ dev_err(dev, "Cannot map IO\n");
+ status = -ENXIO;
+ goto out_error_ioremap;
+ }
+
+ res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
+ if (res == NULL) {
+ dev_err(dev, "No DMA channel specified\n");
+ status = -ENOENT;
+ goto out_error_free_io;
+ }
+ drv_data->dma_channel = res->start;
+
+ drv_data->spi_irq = platform_get_irq(pdev, 0);
+ if (drv_data->spi_irq < 0) {
+ dev_err(dev, "No spi pio irq specified\n");
+ status = -ENOENT;
+ goto out_error_free_io;
+ }
+
+ /* Initial and start queue */
+ status = bfin_spi_init_queue(drv_data);
+ if (status != 0) {
+ dev_err(dev, "problem initializing queue\n");
+ goto out_error_queue_alloc;
+ }
+
+ status = bfin_spi_start_queue(drv_data);
+ if (status != 0) {
+ dev_err(dev, "problem starting queue\n");
+ goto out_error_queue_alloc;
+ }
+
+ status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
+ if (status != 0) {
+ dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
+ goto out_error_queue_alloc;
+ }
+
+ /* Reset SPI registers. If these registers were used by the boot loader,
+ * the sky may fall on your head if you enable the dma controller.
+ */
+ write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
+ write_FLAG(drv_data, 0xFF00);
+
+ /* Register with the SPI framework */
+ platform_set_drvdata(pdev, drv_data);
+ status = spi_register_master(master);
+ if (status != 0) {
+ dev_err(dev, "problem registering spi master\n");
+ goto out_error_queue_alloc;
+ }
+
+ dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
+ DRV_DESC, DRV_VERSION, drv_data->regs_base,
+ drv_data->dma_channel);
+ return status;
+
+out_error_queue_alloc:
+ bfin_spi_destroy_queue(drv_data);
+out_error_free_io:
+ iounmap((void *) drv_data->regs_base);
+out_error_ioremap:
+out_error_get_res:
+ spi_master_put(master);
+
+ return status;
+}
+
+/* stop hardware and remove the driver */
+static int __devexit bfin_spi_remove(struct platform_device *pdev)
+{
+ struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
+ int status = 0;
+
+ if (!drv_data)
+ return 0;
+
+ /* Remove the queue */
+ status = bfin_spi_destroy_queue(drv_data);
+ if (status != 0)
+ return status;
+
+ /* Disable the SSP at the peripheral and SOC level */
+ bfin_spi_disable(drv_data);
+
+ /* Release DMA */
+ if (drv_data->master_info->enable_dma) {
+ if (dma_channel_active(drv_data->dma_channel))
+ free_dma(drv_data->dma_channel);
+ }
+
+ if (drv_data->irq_requested) {
+ free_irq(drv_data->spi_irq, drv_data);
+ drv_data->irq_requested = 0;
+ }
+
+ /* Disconnect from the SPI framework */
+ spi_unregister_master(drv_data->master);
+
+ peripheral_free_list(drv_data->pin_req);
+
+ /* Prevent double remove */
+ platform_set_drvdata(pdev, NULL);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
+{
+ struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
+ int status = 0;
+
+ status = bfin_spi_stop_queue(drv_data);
+ if (status != 0)
+ return status;
+
+ drv_data->ctrl_reg = read_CTRL(drv_data);
+ drv_data->flag_reg = read_FLAG(drv_data);
+
+ /*
+ * reset SPI_CTL and SPI_FLG registers
+ */
+ write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
+ write_FLAG(drv_data, 0xFF00);
+
+ return 0;
+}
+
+static int bfin_spi_resume(struct platform_device *pdev)
+{
+ struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
+ int status = 0;
+
+ write_CTRL(drv_data, drv_data->ctrl_reg);
+ write_FLAG(drv_data, drv_data->flag_reg);
+
+ /* Start the queue running */
+ status = bfin_spi_start_queue(drv_data);
+ if (status != 0) {
+ dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
+ return status;
+ }
+
+ return 0;
+}
+#else
+#define bfin_spi_suspend NULL
+#define bfin_spi_resume NULL
+#endif /* CONFIG_PM */
+
+MODULE_ALIAS("platform:bfin-spi");
+static struct platform_driver bfin_spi_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ .owner = THIS_MODULE,
+ },
+ .suspend = bfin_spi_suspend,
+ .resume = bfin_spi_resume,
+ .remove = __devexit_p(bfin_spi_remove),
+};
+
+static int __init bfin_spi_init(void)
+{
+ return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
+}
+subsys_initcall(bfin_spi_init);
+
+static void __exit bfin_spi_exit(void)
+{
+ platform_driver_unregister(&bfin_spi_driver);
+}
+module_exit(bfin_spi_exit);
--- /dev/null
+/*
+ * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
+ *
+ * Copyright (C) 2008-2009 ST-Ericsson AB
+ * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
+ *
+ * Author: Linus Walleij <linus.walleij@stericsson.com>
+ *
+ * Initial version inspired by:
+ * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
+ * Initial adoption to PL022 by:
+ * Sachin Verma <sachin.verma@st.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/ioport.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/spi/spi.h>
+#include <linux/workqueue.h>
+#include <linux/delay.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/amba/bus.h>
+#include <linux/amba/pl022.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/scatterlist.h>
+#include <linux/pm_runtime.h>
+
+/*
+ * This macro is used to define some register default values.
+ * reg is masked with mask, the OR:ed with an (again masked)
+ * val shifted sb steps to the left.
+ */
+#define SSP_WRITE_BITS(reg, val, mask, sb) \
+ ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
+
+/*
+ * This macro is also used to define some default values.
+ * It will just shift val by sb steps to the left and mask
+ * the result with mask.
+ */
+#define GEN_MASK_BITS(val, mask, sb) \
+ (((val)<<(sb)) & (mask))
+
+#define DRIVE_TX 0
+#define DO_NOT_DRIVE_TX 1
+
+#define DO_NOT_QUEUE_DMA 0
+#define QUEUE_DMA 1
+
+#define RX_TRANSFER 1
+#define TX_TRANSFER 2
+
+/*
+ * Macros to access SSP Registers with their offsets
+ */
+#define SSP_CR0(r) (r + 0x000)
+#define SSP_CR1(r) (r + 0x004)
+#define SSP_DR(r) (r + 0x008)
+#define SSP_SR(r) (r + 0x00C)
+#define SSP_CPSR(r) (r + 0x010)
+#define SSP_IMSC(r) (r + 0x014)
+#define SSP_RIS(r) (r + 0x018)
+#define SSP_MIS(r) (r + 0x01C)
+#define SSP_ICR(r) (r + 0x020)
+#define SSP_DMACR(r) (r + 0x024)
+#define SSP_ITCR(r) (r + 0x080)
+#define SSP_ITIP(r) (r + 0x084)
+#define SSP_ITOP(r) (r + 0x088)
+#define SSP_TDR(r) (r + 0x08C)
+
+#define SSP_PID0(r) (r + 0xFE0)
+#define SSP_PID1(r) (r + 0xFE4)
+#define SSP_PID2(r) (r + 0xFE8)
+#define SSP_PID3(r) (r + 0xFEC)
+
+#define SSP_CID0(r) (r + 0xFF0)
+#define SSP_CID1(r) (r + 0xFF4)
+#define SSP_CID2(r) (r + 0xFF8)
+#define SSP_CID3(r) (r + 0xFFC)
+
+/*
+ * SSP Control Register 0 - SSP_CR0
+ */
+#define SSP_CR0_MASK_DSS (0x0FUL << 0)
+#define SSP_CR0_MASK_FRF (0x3UL << 4)
+#define SSP_CR0_MASK_SPO (0x1UL << 6)
+#define SSP_CR0_MASK_SPH (0x1UL << 7)
+#define SSP_CR0_MASK_SCR (0xFFUL << 8)
+
+/*
+ * The ST version of this block moves som bits
+ * in SSP_CR0 and extends it to 32 bits
+ */
+#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
+#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
+#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
+#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
+
+
+/*
+ * SSP Control Register 0 - SSP_CR1
+ */
+#define SSP_CR1_MASK_LBM (0x1UL << 0)
+#define SSP_CR1_MASK_SSE (0x1UL << 1)
+#define SSP_CR1_MASK_MS (0x1UL << 2)
+#define SSP_CR1_MASK_SOD (0x1UL << 3)
+
+/*
+ * The ST version of this block adds some bits
+ * in SSP_CR1
+ */
+#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
+#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
+#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
+#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
+#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
+/* This one is only in the PL023 variant */
+#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
+
+/*
+ * SSP Status Register - SSP_SR
+ */
+#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
+#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
+#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
+#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
+#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
+
+/*
+ * SSP Clock Prescale Register - SSP_CPSR
+ */
+#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
+
+/*
+ * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
+ */
+#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
+#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
+#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
+#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
+
+/*
+ * SSP Raw Interrupt Status Register - SSP_RIS
+ */
+/* Receive Overrun Raw Interrupt status */
+#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
+/* Receive Timeout Raw Interrupt status */
+#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
+/* Receive FIFO Raw Interrupt status */
+#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
+/* Transmit FIFO Raw Interrupt status */
+#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
+
+/*
+ * SSP Masked Interrupt Status Register - SSP_MIS
+ */
+/* Receive Overrun Masked Interrupt status */
+#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
+/* Receive Timeout Masked Interrupt status */
+#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
+/* Receive FIFO Masked Interrupt status */
+#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
+/* Transmit FIFO Masked Interrupt status */
+#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
+
+/*
+ * SSP Interrupt Clear Register - SSP_ICR
+ */
+/* Receive Overrun Raw Clear Interrupt bit */
+#define SSP_ICR_MASK_RORIC (0x1UL << 0)
+/* Receive Timeout Clear Interrupt bit */
+#define SSP_ICR_MASK_RTIC (0x1UL << 1)
+
+/*
+ * SSP DMA Control Register - SSP_DMACR
+ */
+/* Receive DMA Enable bit */
+#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
+/* Transmit DMA Enable bit */
+#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
+
+/*
+ * SSP Integration Test control Register - SSP_ITCR
+ */
+#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
+#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
+
+/*
+ * SSP Integration Test Input Register - SSP_ITIP
+ */
+#define ITIP_MASK_SSPRXD (0x1UL << 0)
+#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
+#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
+#define ITIP_MASK_RXDMAC (0x1UL << 3)
+#define ITIP_MASK_TXDMAC (0x1UL << 4)
+#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
+
+/*
+ * SSP Integration Test output Register - SSP_ITOP
+ */
+#define ITOP_MASK_SSPTXD (0x1UL << 0)
+#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
+#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
+#define ITOP_MASK_SSPOEn (0x1UL << 3)
+#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
+#define ITOP_MASK_RORINTR (0x1UL << 5)
+#define ITOP_MASK_RTINTR (0x1UL << 6)
+#define ITOP_MASK_RXINTR (0x1UL << 7)
+#define ITOP_MASK_TXINTR (0x1UL << 8)
+#define ITOP_MASK_INTR (0x1UL << 9)
+#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
+#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
+#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
+#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
+
+/*
+ * SSP Test Data Register - SSP_TDR
+ */
+#define TDR_MASK_TESTDATA (0xFFFFFFFF)
+
+/*
+ * Message State
+ * we use the spi_message.state (void *) pointer to
+ * hold a single state value, that's why all this
+ * (void *) casting is done here.
+ */
+#define STATE_START ((void *) 0)
+#define STATE_RUNNING ((void *) 1)
+#define STATE_DONE ((void *) 2)
+#define STATE_ERROR ((void *) -1)
+
+/*
+ * SSP State - Whether Enabled or Disabled
+ */
+#define SSP_DISABLED (0)
+#define SSP_ENABLED (1)
+
+/*
+ * SSP DMA State - Whether DMA Enabled or Disabled
+ */
+#define SSP_DMA_DISABLED (0)
+#define SSP_DMA_ENABLED (1)
+
+/*
+ * SSP Clock Defaults
+ */
+#define SSP_DEFAULT_CLKRATE 0x2
+#define SSP_DEFAULT_PRESCALE 0x40
+
+/*
+ * SSP Clock Parameter ranges
+ */
+#define CPSDVR_MIN 0x02
+#define CPSDVR_MAX 0xFE
+#define SCR_MIN 0x00
+#define SCR_MAX 0xFF
+
+/*
+ * SSP Interrupt related Macros
+ */
+#define DEFAULT_SSP_REG_IMSC 0x0UL
+#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
+#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
+
+#define CLEAR_ALL_INTERRUPTS 0x3
+
+#define SPI_POLLING_TIMEOUT 1000
+
+
+/*
+ * The type of reading going on on this chip
+ */
+enum ssp_reading {
+ READING_NULL,
+ READING_U8,
+ READING_U16,
+ READING_U32
+};
+
+/**
+ * The type of writing going on on this chip
+ */
+enum ssp_writing {
+ WRITING_NULL,
+ WRITING_U8,
+ WRITING_U16,
+ WRITING_U32
+};
+
+/**
+ * struct vendor_data - vendor-specific config parameters
+ * for PL022 derivates
+ * @fifodepth: depth of FIFOs (both)
+ * @max_bpw: maximum number of bits per word
+ * @unidir: supports unidirection transfers
+ * @extended_cr: 32 bit wide control register 0 with extra
+ * features and extra features in CR1 as found in the ST variants
+ * @pl023: supports a subset of the ST extensions called "PL023"
+ */
+struct vendor_data {
+ int fifodepth;
+ int max_bpw;
+ bool unidir;
+ bool extended_cr;
+ bool pl023;
+ bool loopback;
+};
+
+/**
+ * struct pl022 - This is the private SSP driver data structure
+ * @adev: AMBA device model hookup
+ * @vendor: vendor data for the IP block
+ * @phybase: the physical memory where the SSP device resides
+ * @virtbase: the virtual memory where the SSP is mapped
+ * @clk: outgoing clock "SPICLK" for the SPI bus
+ * @master: SPI framework hookup
+ * @master_info: controller-specific data from machine setup
+ * @workqueue: a workqueue on which any spi_message request is queued
+ * @pump_messages: work struct for scheduling work to the workqueue
+ * @queue_lock: spinlock to syncronise access to message queue
+ * @queue: message queue
+ * @busy: workqueue is busy
+ * @running: workqueue is running
+ * @pump_transfers: Tasklet used in Interrupt Transfer mode
+ * @cur_msg: Pointer to current spi_message being processed
+ * @cur_transfer: Pointer to current spi_transfer
+ * @cur_chip: pointer to current clients chip(assigned from controller_state)
+ * @tx: current position in TX buffer to be read
+ * @tx_end: end position in TX buffer to be read
+ * @rx: current position in RX buffer to be written
+ * @rx_end: end position in RX buffer to be written
+ * @read: the type of read currently going on
+ * @write: the type of write currently going on
+ * @exp_fifo_level: expected FIFO level
+ * @dma_rx_channel: optional channel for RX DMA
+ * @dma_tx_channel: optional channel for TX DMA
+ * @sgt_rx: scattertable for the RX transfer
+ * @sgt_tx: scattertable for the TX transfer
+ * @dummypage: a dummy page used for driving data on the bus with DMA
+ */
+struct pl022 {
+ struct amba_device *adev;
+ struct vendor_data *vendor;
+ resource_size_t phybase;
+ void __iomem *virtbase;
+ struct clk *clk;
+ struct spi_master *master;
+ struct pl022_ssp_controller *master_info;
+ /* Driver message queue */
+ struct workqueue_struct *workqueue;
+ struct work_struct pump_messages;
+ spinlock_t queue_lock;
+ struct list_head queue;
+ bool busy;
+ bool running;
+ /* Message transfer pump */
+ struct tasklet_struct pump_transfers;
+ struct spi_message *cur_msg;
+ struct spi_transfer *cur_transfer;
+ struct chip_data *cur_chip;
+ void *tx;
+ void *tx_end;
+ void *rx;
+ void *rx_end;
+ enum ssp_reading read;
+ enum ssp_writing write;
+ u32 exp_fifo_level;
+ enum ssp_rx_level_trig rx_lev_trig;
+ enum ssp_tx_level_trig tx_lev_trig;
+ /* DMA settings */
+#ifdef CONFIG_DMA_ENGINE
+ struct dma_chan *dma_rx_channel;
+ struct dma_chan *dma_tx_channel;
+ struct sg_table sgt_rx;
+ struct sg_table sgt_tx;
+ char *dummypage;
+#endif
+};
+
+/**
+ * struct chip_data - To maintain runtime state of SSP for each client chip
+ * @cr0: Value of control register CR0 of SSP - on later ST variants this
+ * register is 32 bits wide rather than just 16
+ * @cr1: Value of control register CR1 of SSP
+ * @dmacr: Value of DMA control Register of SSP
+ * @cpsr: Value of Clock prescale register
+ * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
+ * @enable_dma: Whether to enable DMA or not
+ * @read: function ptr to be used to read when doing xfer for this chip
+ * @write: function ptr to be used to write when doing xfer for this chip
+ * @cs_control: chip select callback provided by chip
+ * @xfer_type: polling/interrupt/DMA
+ *
+ * Runtime state of the SSP controller, maintained per chip,
+ * This would be set according to the current message that would be served
+ */
+struct chip_data {
+ u32 cr0;
+ u16 cr1;
+ u16 dmacr;
+ u16 cpsr;
+ u8 n_bytes;
+ bool enable_dma;
+ enum ssp_reading read;
+ enum ssp_writing write;
+ void (*cs_control) (u32 command);
+ int xfer_type;
+};
+
+/**
+ * null_cs_control - Dummy chip select function
+ * @command: select/delect the chip
+ *
+ * If no chip select function is provided by client this is used as dummy
+ * chip select
+ */
+static void null_cs_control(u32 command)
+{
+ pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
+}
+
+/**
+ * giveback - current spi_message is over, schedule next message and call
+ * callback of this message. Assumes that caller already
+ * set message->status; dma and pio irqs are blocked
+ * @pl022: SSP driver private data structure
+ */
+static void giveback(struct pl022 *pl022)
+{
+ struct spi_transfer *last_transfer;
+ unsigned long flags;
+ struct spi_message *msg;
+ void (*curr_cs_control) (u32 command);
+
+ /*
+ * This local reference to the chip select function
+ * is needed because we set curr_chip to NULL
+ * as a step toward termininating the message.
+ */
+ curr_cs_control = pl022->cur_chip->cs_control;
+ spin_lock_irqsave(&pl022->queue_lock, flags);
+ msg = pl022->cur_msg;
+ pl022->cur_msg = NULL;
+ pl022->cur_transfer = NULL;
+ pl022->cur_chip = NULL;
+ queue_work(pl022->workqueue, &pl022->pump_messages);
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+
+ last_transfer = list_entry(msg->transfers.prev,
+ struct spi_transfer,
+ transfer_list);
+
+ /* Delay if requested before any change in chip select */
+ if (last_transfer->delay_usecs)
+ /*
+ * FIXME: This runs in interrupt context.
+ * Is this really smart?
+ */
+ udelay(last_transfer->delay_usecs);
+
+ /*
+ * Drop chip select UNLESS cs_change is true or we are returning
+ * a message with an error, or next message is for another chip
+ */
+ if (!last_transfer->cs_change)
+ curr_cs_control(SSP_CHIP_DESELECT);
+ else {
+ struct spi_message *next_msg;
+
+ /* Holding of cs was hinted, but we need to make sure
+ * the next message is for the same chip. Don't waste
+ * time with the following tests unless this was hinted.
+ *
+ * We cannot postpone this until pump_messages, because
+ * after calling msg->complete (below) the driver that
+ * sent the current message could be unloaded, which
+ * could invalidate the cs_control() callback...
+ */
+
+ /* get a pointer to the next message, if any */
+ spin_lock_irqsave(&pl022->queue_lock, flags);
+ if (list_empty(&pl022->queue))
+ next_msg = NULL;
+ else
+ next_msg = list_entry(pl022->queue.next,
+ struct spi_message, queue);
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+
+ /* see if the next and current messages point
+ * to the same chip
+ */
+ if (next_msg && next_msg->spi != msg->spi)
+ next_msg = NULL;
+ if (!next_msg || msg->state == STATE_ERROR)
+ curr_cs_control(SSP_CHIP_DESELECT);
+ }
+ msg->state = NULL;
+ if (msg->complete)
+ msg->complete(msg->context);
+ /* This message is completed, so let's turn off the clocks & power */
+ clk_disable(pl022->clk);
+ amba_pclk_disable(pl022->adev);
+ amba_vcore_disable(pl022->adev);
+ pm_runtime_put(&pl022->adev->dev);
+}
+
+/**
+ * flush - flush the FIFO to reach a clean state
+ * @pl022: SSP driver private data structure
+ */
+static int flush(struct pl022 *pl022)
+{
+ unsigned long limit = loops_per_jiffy << 1;
+
+ dev_dbg(&pl022->adev->dev, "flush\n");
+ do {
+ while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
+ readw(SSP_DR(pl022->virtbase));
+ } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
+
+ pl022->exp_fifo_level = 0;
+
+ return limit;
+}
+
+/**
+ * restore_state - Load configuration of current chip
+ * @pl022: SSP driver private data structure
+ */
+static void restore_state(struct pl022 *pl022)
+{
+ struct chip_data *chip = pl022->cur_chip;
+
+ if (pl022->vendor->extended_cr)
+ writel(chip->cr0, SSP_CR0(pl022->virtbase));
+ else
+ writew(chip->cr0, SSP_CR0(pl022->virtbase));
+ writew(chip->cr1, SSP_CR1(pl022->virtbase));
+ writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
+ writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
+ writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
+ writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
+}
+
+/*
+ * Default SSP Register Values
+ */
+#define DEFAULT_SSP_REG_CR0 ( \
+ GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
+ GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
+ GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
+ GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
+ GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
+)
+
+/* ST versions have slightly different bit layout */
+#define DEFAULT_SSP_REG_CR0_ST ( \
+ GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
+ GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
+ GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
+ GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
+ GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
+ GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
+ GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
+)
+
+/* The PL023 version is slightly different again */
+#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
+ GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
+ GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
+ GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
+ GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
+)
+
+#define DEFAULT_SSP_REG_CR1 ( \
+ GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
+ GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
+ GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
+ GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
+)
+
+/* ST versions extend this register to use all 16 bits */
+#define DEFAULT_SSP_REG_CR1_ST ( \
+ DEFAULT_SSP_REG_CR1 | \
+ GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
+ GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
+ GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
+ GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
+ GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
+)
+
+/*
+ * The PL023 variant has further differences: no loopback mode, no microwire
+ * support, and a new clock feedback delay setting.
+ */
+#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
+ GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
+ GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
+ GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
+ GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
+ GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
+ GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
+ GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
+ GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
+)
+
+#define DEFAULT_SSP_REG_CPSR ( \
+ GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
+)
+
+#define DEFAULT_SSP_REG_DMACR (\
+ GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
+ GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
+)
+
+/**
+ * load_ssp_default_config - Load default configuration for SSP
+ * @pl022: SSP driver private data structure
+ */
+static void load_ssp_default_config(struct pl022 *pl022)
+{
+ if (pl022->vendor->pl023) {
+ writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
+ writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
+ } else if (pl022->vendor->extended_cr) {
+ writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
+ writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
+ } else {
+ writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
+ writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
+ }
+ writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
+ writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
+ writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
+ writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
+}
+
+/**
+ * This will write to TX and read from RX according to the parameters
+ * set in pl022.
+ */
+static void readwriter(struct pl022 *pl022)
+{
+
+ /*
+ * The FIFO depth is different between primecell variants.
+ * I believe filling in too much in the FIFO might cause
+ * errons in 8bit wide transfers on ARM variants (just 8 words
+ * FIFO, means only 8x8 = 64 bits in FIFO) at least.
+ *
+ * To prevent this issue, the TX FIFO is only filled to the
+ * unused RX FIFO fill length, regardless of what the TX
+ * FIFO status flag indicates.
+ */
+ dev_dbg(&pl022->adev->dev,
+ "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
+ __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
+
+ /* Read as much as you can */
+ while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
+ && (pl022->rx < pl022->rx_end)) {
+ switch (pl022->read) {
+ case READING_NULL:
+ readw(SSP_DR(pl022->virtbase));
+ break;
+ case READING_U8:
+ *(u8 *) (pl022->rx) =
+ readw(SSP_DR(pl022->virtbase)) & 0xFFU;
+ break;
+ case READING_U16:
+ *(u16 *) (pl022->rx) =
+ (u16) readw(SSP_DR(pl022->virtbase));
+ break;
+ case READING_U32:
+ *(u32 *) (pl022->rx) =
+ readl(SSP_DR(pl022->virtbase));
+ break;
+ }
+ pl022->rx += (pl022->cur_chip->n_bytes);
+ pl022->exp_fifo_level--;
+ }
+ /*
+ * Write as much as possible up to the RX FIFO size
+ */
+ while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
+ && (pl022->tx < pl022->tx_end)) {
+ switch (pl022->write) {
+ case WRITING_NULL:
+ writew(0x0, SSP_DR(pl022->virtbase));
+ break;
+ case WRITING_U8:
+ writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
+ break;
+ case WRITING_U16:
+ writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
+ break;
+ case WRITING_U32:
+ writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
+ break;
+ }
+ pl022->tx += (pl022->cur_chip->n_bytes);
+ pl022->exp_fifo_level++;
+ /*
+ * This inner reader takes care of things appearing in the RX
+ * FIFO as we're transmitting. This will happen a lot since the
+ * clock starts running when you put things into the TX FIFO,
+ * and then things are continuously clocked into the RX FIFO.
+ */
+ while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
+ && (pl022->rx < pl022->rx_end)) {
+ switch (pl022->read) {
+ case READING_NULL:
+ readw(SSP_DR(pl022->virtbase));
+ break;
+ case READING_U8:
+ *(u8 *) (pl022->rx) =
+ readw(SSP_DR(pl022->virtbase)) & 0xFFU;
+ break;
+ case READING_U16:
+ *(u16 *) (pl022->rx) =
+ (u16) readw(SSP_DR(pl022->virtbase));
+ break;
+ case READING_U32:
+ *(u32 *) (pl022->rx) =
+ readl(SSP_DR(pl022->virtbase));
+ break;
+ }
+ pl022->rx += (pl022->cur_chip->n_bytes);
+ pl022->exp_fifo_level--;
+ }
+ }
+ /*
+ * When we exit here the TX FIFO should be full and the RX FIFO
+ * should be empty
+ */
+}
+
+
+/**
+ * next_transfer - Move to the Next transfer in the current spi message
+ * @pl022: SSP driver private data structure
+ *
+ * This function moves though the linked list of spi transfers in the
+ * current spi message and returns with the state of current spi
+ * message i.e whether its last transfer is done(STATE_DONE) or
+ * Next transfer is ready(STATE_RUNNING)
+ */
+static void *next_transfer(struct pl022 *pl022)
+{
+ struct spi_message *msg = pl022->cur_msg;
+ struct spi_transfer *trans = pl022->cur_transfer;
+
+ /* Move to next transfer */
+ if (trans->transfer_list.next != &msg->transfers) {
+ pl022->cur_transfer =
+ list_entry(trans->transfer_list.next,
+ struct spi_transfer, transfer_list);
+ return STATE_RUNNING;
+ }
+ return STATE_DONE;
+}
+
+/*
+ * This DMA functionality is only compiled in if we have
+ * access to the generic DMA devices/DMA engine.
+ */
+#ifdef CONFIG_DMA_ENGINE
+static void unmap_free_dma_scatter(struct pl022 *pl022)
+{
+ /* Unmap and free the SG tables */
+ dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
+ pl022->sgt_tx.nents, DMA_TO_DEVICE);
+ dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
+ pl022->sgt_rx.nents, DMA_FROM_DEVICE);
+ sg_free_table(&pl022->sgt_rx);
+ sg_free_table(&pl022->sgt_tx);
+}
+
+static void dma_callback(void *data)
+{
+ struct pl022 *pl022 = data;
+ struct spi_message *msg = pl022->cur_msg;
+
+ BUG_ON(!pl022->sgt_rx.sgl);
+
+#ifdef VERBOSE_DEBUG
+ /*
+ * Optionally dump out buffers to inspect contents, this is
+ * good if you want to convince yourself that the loopback
+ * read/write contents are the same, when adopting to a new
+ * DMA engine.
+ */
+ {
+ struct scatterlist *sg;
+ unsigned int i;
+
+ dma_sync_sg_for_cpu(&pl022->adev->dev,
+ pl022->sgt_rx.sgl,
+ pl022->sgt_rx.nents,
+ DMA_FROM_DEVICE);
+
+ for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
+ dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
+ print_hex_dump(KERN_ERR, "SPI RX: ",
+ DUMP_PREFIX_OFFSET,
+ 16,
+ 1,
+ sg_virt(sg),
+ sg_dma_len(sg),
+ 1);
+ }
+ for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
+ dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
+ print_hex_dump(KERN_ERR, "SPI TX: ",
+ DUMP_PREFIX_OFFSET,
+ 16,
+ 1,
+ sg_virt(sg),
+ sg_dma_len(sg),
+ 1);
+ }
+ }
+#endif
+
+ unmap_free_dma_scatter(pl022);
+
+ /* Update total bytes transferred */
+ msg->actual_length += pl022->cur_transfer->len;
+ if (pl022->cur_transfer->cs_change)
+ pl022->cur_chip->
+ cs_control(SSP_CHIP_DESELECT);
+
+ /* Move to next transfer */
+ msg->state = next_transfer(pl022);
+ tasklet_schedule(&pl022->pump_transfers);
+}
+
+static void setup_dma_scatter(struct pl022 *pl022,
+ void *buffer,
+ unsigned int length,
+ struct sg_table *sgtab)
+{
+ struct scatterlist *sg;
+ int bytesleft = length;
+ void *bufp = buffer;
+ int mapbytes;
+ int i;
+
+ if (buffer) {
+ for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
+ /*
+ * If there are less bytes left than what fits
+ * in the current page (plus page alignment offset)
+ * we just feed in this, else we stuff in as much
+ * as we can.
+ */
+ if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
+ mapbytes = bytesleft;
+ else
+ mapbytes = PAGE_SIZE - offset_in_page(bufp);
+ sg_set_page(sg, virt_to_page(bufp),
+ mapbytes, offset_in_page(bufp));
+ bufp += mapbytes;
+ bytesleft -= mapbytes;
+ dev_dbg(&pl022->adev->dev,
+ "set RX/TX target page @ %p, %d bytes, %d left\n",
+ bufp, mapbytes, bytesleft);
+ }
+ } else {
+ /* Map the dummy buffer on every page */
+ for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
+ if (bytesleft < PAGE_SIZE)
+ mapbytes = bytesleft;
+ else
+ mapbytes = PAGE_SIZE;
+ sg_set_page(sg, virt_to_page(pl022->dummypage),
+ mapbytes, 0);
+ bytesleft -= mapbytes;
+ dev_dbg(&pl022->adev->dev,
+ "set RX/TX to dummy page %d bytes, %d left\n",
+ mapbytes, bytesleft);
+
+ }
+ }
+ BUG_ON(bytesleft);
+}
+
+/**
+ * configure_dma - configures the channels for the next transfer
+ * @pl022: SSP driver's private data structure
+ */
+static int configure_dma(struct pl022 *pl022)
+{
+ struct dma_slave_config rx_conf = {
+ .src_addr = SSP_DR(pl022->phybase),
+ .direction = DMA_FROM_DEVICE,
+ };
+ struct dma_slave_config tx_conf = {
+ .dst_addr = SSP_DR(pl022->phybase),
+ .direction = DMA_TO_DEVICE,
+ };
+ unsigned int pages;
+ int ret;
+ int rx_sglen, tx_sglen;
+ struct dma_chan *rxchan = pl022->dma_rx_channel;
+ struct dma_chan *txchan = pl022->dma_tx_channel;
+ struct dma_async_tx_descriptor *rxdesc;
+ struct dma_async_tx_descriptor *txdesc;
+
+ /* Check that the channels are available */
+ if (!rxchan || !txchan)
+ return -ENODEV;
+
+ /*
+ * If supplied, the DMA burstsize should equal the FIFO trigger level.
+ * Notice that the DMA engine uses one-to-one mapping. Since we can
+ * not trigger on 2 elements this needs explicit mapping rather than
+ * calculation.
+ */
+ switch (pl022->rx_lev_trig) {
+ case SSP_RX_1_OR_MORE_ELEM:
+ rx_conf.src_maxburst = 1;
+ break;
+ case SSP_RX_4_OR_MORE_ELEM:
+ rx_conf.src_maxburst = 4;
+ break;
+ case SSP_RX_8_OR_MORE_ELEM:
+ rx_conf.src_maxburst = 8;
+ break;
+ case SSP_RX_16_OR_MORE_ELEM:
+ rx_conf.src_maxburst = 16;
+ break;
+ case SSP_RX_32_OR_MORE_ELEM:
+ rx_conf.src_maxburst = 32;
+ break;
+ default:
+ rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
+ break;
+ }
+
+ switch (pl022->tx_lev_trig) {
+ case SSP_TX_1_OR_MORE_EMPTY_LOC:
+ tx_conf.dst_maxburst = 1;
+ break;
+ case SSP_TX_4_OR_MORE_EMPTY_LOC:
+ tx_conf.dst_maxburst = 4;
+ break;
+ case SSP_TX_8_OR_MORE_EMPTY_LOC:
+ tx_conf.dst_maxburst = 8;
+ break;
+ case SSP_TX_16_OR_MORE_EMPTY_LOC:
+ tx_conf.dst_maxburst = 16;
+ break;
+ case SSP_TX_32_OR_MORE_EMPTY_LOC:
+ tx_conf.dst_maxburst = 32;
+ break;
+ default:
+ tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
+ break;
+ }
+
+ switch (pl022->read) {
+ case READING_NULL:
+ /* Use the same as for writing */
+ rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
+ break;
+ case READING_U8:
+ rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+ break;
+ case READING_U16:
+ rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
+ break;
+ case READING_U32:
+ rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ break;
+ }
+
+ switch (pl022->write) {
+ case WRITING_NULL:
+ /* Use the same as for reading */
+ tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
+ break;
+ case WRITING_U8:
+ tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+ break;
+ case WRITING_U16:
+ tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
+ break;
+ case WRITING_U32:
+ tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ break;
+ }
+
+ /* SPI pecularity: we need to read and write the same width */
+ if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
+ rx_conf.src_addr_width = tx_conf.dst_addr_width;
+ if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
+ tx_conf.dst_addr_width = rx_conf.src_addr_width;
+ BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
+
+ dmaengine_slave_config(rxchan, &rx_conf);
+ dmaengine_slave_config(txchan, &tx_conf);
+
+ /* Create sglists for the transfers */
+ pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
+ dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
+
+ ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
+ if (ret)
+ goto err_alloc_rx_sg;
+
+ ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
+ if (ret)
+ goto err_alloc_tx_sg;
+
+ /* Fill in the scatterlists for the RX+TX buffers */
+ setup_dma_scatter(pl022, pl022->rx,
+ pl022->cur_transfer->len, &pl022->sgt_rx);
+ setup_dma_scatter(pl022, pl022->tx,
+ pl022->cur_transfer->len, &pl022->sgt_tx);
+
+ /* Map DMA buffers */
+ rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
+ pl022->sgt_rx.nents, DMA_FROM_DEVICE);
+ if (!rx_sglen)
+ goto err_rx_sgmap;
+
+ tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
+ pl022->sgt_tx.nents, DMA_TO_DEVICE);
+ if (!tx_sglen)
+ goto err_tx_sgmap;
+
+ /* Send both scatterlists */
+ rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
+ pl022->sgt_rx.sgl,
+ rx_sglen,
+ DMA_FROM_DEVICE,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!rxdesc)
+ goto err_rxdesc;
+
+ txdesc = txchan->device->device_prep_slave_sg(txchan,
+ pl022->sgt_tx.sgl,
+ tx_sglen,
+ DMA_TO_DEVICE,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!txdesc)
+ goto err_txdesc;
+
+ /* Put the callback on the RX transfer only, that should finish last */
+ rxdesc->callback = dma_callback;
+ rxdesc->callback_param = pl022;
+
+ /* Submit and fire RX and TX with TX last so we're ready to read! */
+ dmaengine_submit(rxdesc);
+ dmaengine_submit(txdesc);
+ dma_async_issue_pending(rxchan);
+ dma_async_issue_pending(txchan);
+
+ return 0;
+
+err_txdesc:
+ dmaengine_terminate_all(txchan);
+err_rxdesc:
+ dmaengine_terminate_all(rxchan);
+ dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
+ pl022->sgt_tx.nents, DMA_TO_DEVICE);
+err_tx_sgmap:
+ dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
+ pl022->sgt_tx.nents, DMA_FROM_DEVICE);
+err_rx_sgmap:
+ sg_free_table(&pl022->sgt_tx);
+err_alloc_tx_sg:
+ sg_free_table(&pl022->sgt_rx);
+err_alloc_rx_sg:
+ return -ENOMEM;
+}
+
+static int __init pl022_dma_probe(struct pl022 *pl022)
+{
+ dma_cap_mask_t mask;
+
+ /* Try to acquire a generic DMA engine slave channel */
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+ /*
+ * We need both RX and TX channels to do DMA, else do none
+ * of them.
+ */
+ pl022->dma_rx_channel = dma_request_channel(mask,
+ pl022->master_info->dma_filter,
+ pl022->master_info->dma_rx_param);
+ if (!pl022->dma_rx_channel) {
+ dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
+ goto err_no_rxchan;
+ }
+
+ pl022->dma_tx_channel = dma_request_channel(mask,
+ pl022->master_info->dma_filter,
+ pl022->master_info->dma_tx_param);
+ if (!pl022->dma_tx_channel) {
+ dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
+ goto err_no_txchan;
+ }
+
+ pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
+ if (!pl022->dummypage) {
+ dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
+ goto err_no_dummypage;
+ }
+
+ dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
+ dma_chan_name(pl022->dma_rx_channel),
+ dma_chan_name(pl022->dma_tx_channel));
+
+ return 0;
+
+err_no_dummypage:
+ dma_release_channel(pl022->dma_tx_channel);
+err_no_txchan:
+ dma_release_channel(pl022->dma_rx_channel);
+ pl022->dma_rx_channel = NULL;
+err_no_rxchan:
+ dev_err(&pl022->adev->dev,
+ "Failed to work in dma mode, work without dma!\n");
+ return -ENODEV;
+}
+
+static void terminate_dma(struct pl022 *pl022)
+{
+ struct dma_chan *rxchan = pl022->dma_rx_channel;
+ struct dma_chan *txchan = pl022->dma_tx_channel;
+
+ dmaengine_terminate_all(rxchan);
+ dmaengine_terminate_all(txchan);
+ unmap_free_dma_scatter(pl022);
+}
+
+static void pl022_dma_remove(struct pl022 *pl022)
+{
+ if (pl022->busy)
+ terminate_dma(pl022);
+ if (pl022->dma_tx_channel)
+ dma_release_channel(pl022->dma_tx_channel);
+ if (pl022->dma_rx_channel)
+ dma_release_channel(pl022->dma_rx_channel);
+ kfree(pl022->dummypage);
+}
+
+#else
+static inline int configure_dma(struct pl022 *pl022)
+{
+ return -ENODEV;
+}
+
+static inline int pl022_dma_probe(struct pl022 *pl022)
+{
+ return 0;
+}
+
+static inline void pl022_dma_remove(struct pl022 *pl022)
+{
+}
+#endif
+
+/**
+ * pl022_interrupt_handler - Interrupt handler for SSP controller
+ *
+ * This function handles interrupts generated for an interrupt based transfer.
+ * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
+ * current message's state as STATE_ERROR and schedule the tasklet
+ * pump_transfers which will do the postprocessing of the current message by
+ * calling giveback(). Otherwise it reads data from RX FIFO till there is no
+ * more data, and writes data in TX FIFO till it is not full. If we complete
+ * the transfer we move to the next transfer and schedule the tasklet.
+ */
+static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
+{
+ struct pl022 *pl022 = dev_id;
+ struct spi_message *msg = pl022->cur_msg;
+ u16 irq_status = 0;
+ u16 flag = 0;
+
+ if (unlikely(!msg)) {
+ dev_err(&pl022->adev->dev,
+ "bad message state in interrupt handler");
+ /* Never fail */
+ return IRQ_HANDLED;
+ }
+
+ /* Read the Interrupt Status Register */
+ irq_status = readw(SSP_MIS(pl022->virtbase));
+
+ if (unlikely(!irq_status))
+ return IRQ_NONE;
+
+ /*
+ * This handles the FIFO interrupts, the timeout
+ * interrupts are flatly ignored, they cannot be
+ * trusted.
+ */
+ if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
+ /*
+ * Overrun interrupt - bail out since our Data has been
+ * corrupted
+ */
+ dev_err(&pl022->adev->dev, "FIFO overrun\n");
+ if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
+ dev_err(&pl022->adev->dev,
+ "RXFIFO is full\n");
+ if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
+ dev_err(&pl022->adev->dev,
+ "TXFIFO is full\n");
+
+ /*
+ * Disable and clear interrupts, disable SSP,
+ * mark message with bad status so it can be
+ * retried.
+ */
+ writew(DISABLE_ALL_INTERRUPTS,
+ SSP_IMSC(pl022->virtbase));
+ writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
+ writew((readw(SSP_CR1(pl022->virtbase)) &
+ (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
+ msg->state = STATE_ERROR;
+
+ /* Schedule message queue handler */
+ tasklet_schedule(&pl022->pump_transfers);
+ return IRQ_HANDLED;
+ }
+
+ readwriter(pl022);
+
+ if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
+ flag = 1;
+ /* Disable Transmit interrupt */
+ writew(readw(SSP_IMSC(pl022->virtbase)) &
+ (~SSP_IMSC_MASK_TXIM),
+ SSP_IMSC(pl022->virtbase));
+ }
+
+ /*
+ * Since all transactions must write as much as shall be read,
+ * we can conclude the entire transaction once RX is complete.
+ * At this point, all TX will always be finished.
+ */
+ if (pl022->rx >= pl022->rx_end) {
+ writew(DISABLE_ALL_INTERRUPTS,
+ SSP_IMSC(pl022->virtbase));
+ writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
+ if (unlikely(pl022->rx > pl022->rx_end)) {
+ dev_warn(&pl022->adev->dev, "read %u surplus "
+ "bytes (did you request an odd "
+ "number of bytes on a 16bit bus?)\n",
+ (u32) (pl022->rx - pl022->rx_end));
+ }
+ /* Update total bytes transferred */
+ msg->actual_length += pl022->cur_transfer->len;
+ if (pl022->cur_transfer->cs_change)
+ pl022->cur_chip->
+ cs_control(SSP_CHIP_DESELECT);
+ /* Move to next transfer */
+ msg->state = next_transfer(pl022);
+ tasklet_schedule(&pl022->pump_transfers);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_HANDLED;
+}
+
+/**
+ * This sets up the pointers to memory for the next message to
+ * send out on the SPI bus.
+ */
+static int set_up_next_transfer(struct pl022 *pl022,
+ struct spi_transfer *transfer)
+{
+ int residue;
+
+ /* Sanity check the message for this bus width */
+ residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
+ if (unlikely(residue != 0)) {
+ dev_err(&pl022->adev->dev,
+ "message of %u bytes to transmit but the current "
+ "chip bus has a data width of %u bytes!\n",
+ pl022->cur_transfer->len,
+ pl022->cur_chip->n_bytes);
+ dev_err(&pl022->adev->dev, "skipping this message\n");
+ return -EIO;
+ }
+ pl022->tx = (void *)transfer->tx_buf;
+ pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
+ pl022->rx = (void *)transfer->rx_buf;
+ pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
+ pl022->write =
+ pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
+ pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
+ return 0;
+}
+
+/**
+ * pump_transfers - Tasklet function which schedules next transfer
+ * when running in interrupt or DMA transfer mode.
+ * @data: SSP driver private data structure
+ *
+ */
+static void pump_transfers(unsigned long data)
+{
+ struct pl022 *pl022 = (struct pl022 *) data;
+ struct spi_message *message = NULL;
+ struct spi_transfer *transfer = NULL;
+ struct spi_transfer *previous = NULL;
+
+ /* Get current state information */
+ message = pl022->cur_msg;
+ transfer = pl022->cur_transfer;
+
+ /* Handle for abort */
+ if (message->state == STATE_ERROR) {
+ message->status = -EIO;
+ giveback(pl022);
+ return;
+ }
+
+ /* Handle end of message */
+ if (message->state == STATE_DONE) {
+ message->status = 0;
+ giveback(pl022);
+ return;
+ }
+
+ /* Delay if requested at end of transfer before CS change */
+ if (message->state == STATE_RUNNING) {
+ previous = list_entry(transfer->transfer_list.prev,
+ struct spi_transfer,
+ transfer_list);
+ if (previous->delay_usecs)
+ /*
+ * FIXME: This runs in interrupt context.
+ * Is this really smart?
+ */
+ udelay(previous->delay_usecs);
+
+ /* Drop chip select only if cs_change is requested */
+ if (previous->cs_change)
+ pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
+ } else {
+ /* STATE_START */
+ message->state = STATE_RUNNING;
+ }
+
+ if (set_up_next_transfer(pl022, transfer)) {
+ message->state = STATE_ERROR;
+ message->status = -EIO;
+ giveback(pl022);
+ return;
+ }
+ /* Flush the FIFOs and let's go! */
+ flush(pl022);
+
+ if (pl022->cur_chip->enable_dma) {
+ if (configure_dma(pl022)) {
+ dev_dbg(&pl022->adev->dev,
+ "configuration of DMA failed, fall back to interrupt mode\n");
+ goto err_config_dma;
+ }
+ return;
+ }
+
+err_config_dma:
+ writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
+}
+
+static void do_interrupt_dma_transfer(struct pl022 *pl022)
+{
+ u32 irqflags = ENABLE_ALL_INTERRUPTS;
+
+ /* Enable target chip */
+ pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
+ if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
+ /* Error path */
+ pl022->cur_msg->state = STATE_ERROR;
+ pl022->cur_msg->status = -EIO;
+ giveback(pl022);
+ return;
+ }
+ /* If we're using DMA, set up DMA here */
+ if (pl022->cur_chip->enable_dma) {
+ /* Configure DMA transfer */
+ if (configure_dma(pl022)) {
+ dev_dbg(&pl022->adev->dev,
+ "configuration of DMA failed, fall back to interrupt mode\n");
+ goto err_config_dma;
+ }
+ /* Disable interrupts in DMA mode, IRQ from DMA controller */
+ irqflags = DISABLE_ALL_INTERRUPTS;
+ }
+err_config_dma:
+ /* Enable SSP, turn on interrupts */
+ writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
+ SSP_CR1(pl022->virtbase));
+ writew(irqflags, SSP_IMSC(pl022->virtbase));
+}
+
+static void do_polling_transfer(struct pl022 *pl022)
+{
+ struct spi_message *message = NULL;
+ struct spi_transfer *transfer = NULL;
+ struct spi_transfer *previous = NULL;
+ struct chip_data *chip;
+ unsigned long time, timeout;
+
+ chip = pl022->cur_chip;
+ message = pl022->cur_msg;
+
+ while (message->state != STATE_DONE) {
+ /* Handle for abort */
+ if (message->state == STATE_ERROR)
+ break;
+ transfer = pl022->cur_transfer;
+
+ /* Delay if requested at end of transfer */
+ if (message->state == STATE_RUNNING) {
+ previous =
+ list_entry(transfer->transfer_list.prev,
+ struct spi_transfer, transfer_list);
+ if (previous->delay_usecs)
+ udelay(previous->delay_usecs);
+ if (previous->cs_change)
+ pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
+ } else {
+ /* STATE_START */
+ message->state = STATE_RUNNING;
+ pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
+ }
+
+ /* Configuration Changing Per Transfer */
+ if (set_up_next_transfer(pl022, transfer)) {
+ /* Error path */
+ message->state = STATE_ERROR;
+ break;
+ }
+ /* Flush FIFOs and enable SSP */
+ flush(pl022);
+ writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
+ SSP_CR1(pl022->virtbase));
+
+ dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
+
+ timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
+ while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
+ time = jiffies;
+ readwriter(pl022);
+ if (time_after(time, timeout)) {
+ dev_warn(&pl022->adev->dev,
+ "%s: timeout!\n", __func__);
+ message->state = STATE_ERROR;
+ goto out;
+ }
+ cpu_relax();
+ }
+
+ /* Update total byte transferred */
+ message->actual_length += pl022->cur_transfer->len;
+ if (pl022->cur_transfer->cs_change)
+ pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
+ /* Move to next transfer */
+ message->state = next_transfer(pl022);
+ }
+out:
+ /* Handle end of message */
+ if (message->state == STATE_DONE)
+ message->status = 0;
+ else
+ message->status = -EIO;
+
+ giveback(pl022);
+ return;
+}
+
+/**
+ * pump_messages - Workqueue function which processes spi message queue
+ * @data: pointer to private data of SSP driver
+ *
+ * This function checks if there is any spi message in the queue that
+ * needs processing and delegate control to appropriate function
+ * do_polling_transfer()/do_interrupt_dma_transfer()
+ * based on the kind of the transfer
+ *
+ */
+static void pump_messages(struct work_struct *work)
+{
+ struct pl022 *pl022 =
+ container_of(work, struct pl022, pump_messages);
+ unsigned long flags;
+
+ /* Lock queue and check for queue work */
+ spin_lock_irqsave(&pl022->queue_lock, flags);
+ if (list_empty(&pl022->queue) || !pl022->running) {
+ pl022->busy = false;
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+ return;
+ }
+ /* Make sure we are not already running a message */
+ if (pl022->cur_msg) {
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+ return;
+ }
+ /* Extract head of queue */
+ pl022->cur_msg =
+ list_entry(pl022->queue.next, struct spi_message, queue);
+
+ list_del_init(&pl022->cur_msg->queue);
+ pl022->busy = true;
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+
+ /* Initial message state */
+ pl022->cur_msg->state = STATE_START;
+ pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
+ struct spi_transfer,
+ transfer_list);
+
+ /* Setup the SPI using the per chip configuration */
+ pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
+ /*
+ * We enable the core voltage and clocks here, then the clocks
+ * and core will be disabled when giveback() is called in each method
+ * (poll/interrupt/DMA)
+ */
+ pm_runtime_get_sync(&pl022->adev->dev);
+ amba_vcore_enable(pl022->adev);
+ amba_pclk_enable(pl022->adev);
+ clk_enable(pl022->clk);
+ restore_state(pl022);
+ flush(pl022);
+
+ if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
+ do_polling_transfer(pl022);
+ else
+ do_interrupt_dma_transfer(pl022);
+}
+
+
+static int __init init_queue(struct pl022 *pl022)
+{
+ INIT_LIST_HEAD(&pl022->queue);
+ spin_lock_init(&pl022->queue_lock);
+
+ pl022->running = false;
+ pl022->busy = false;
+
+ tasklet_init(&pl022->pump_transfers,
+ pump_transfers, (unsigned long)pl022);
+
+ INIT_WORK(&pl022->pump_messages, pump_messages);
+ pl022->workqueue = create_singlethread_workqueue(
+ dev_name(pl022->master->dev.parent));
+ if (pl022->workqueue == NULL)
+ return -EBUSY;
+
+ return 0;
+}
+
+
+static int start_queue(struct pl022 *pl022)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&pl022->queue_lock, flags);
+
+ if (pl022->running || pl022->busy) {
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+ return -EBUSY;
+ }
+
+ pl022->running = true;
+ pl022->cur_msg = NULL;
+ pl022->cur_transfer = NULL;
+ pl022->cur_chip = NULL;
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+
+ queue_work(pl022->workqueue, &pl022->pump_messages);
+
+ return 0;
+}
+
+
+static int stop_queue(struct pl022 *pl022)
+{
+ unsigned long flags;
+ unsigned limit = 500;
+ int status = 0;
+
+ spin_lock_irqsave(&pl022->queue_lock, flags);
+
+ /* This is a bit lame, but is optimized for the common execution path.
+ * A wait_queue on the pl022->busy could be used, but then the common
+ * execution path (pump_messages) would be required to call wake_up or
+ * friends on every SPI message. Do this instead */
+ while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+ msleep(10);
+ spin_lock_irqsave(&pl022->queue_lock, flags);
+ }
+
+ if (!list_empty(&pl022->queue) || pl022->busy)
+ status = -EBUSY;
+ else
+ pl022->running = false;
+
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+
+ return status;
+}
+
+static int destroy_queue(struct pl022 *pl022)
+{
+ int status;
+
+ status = stop_queue(pl022);
+ /* we are unloading the module or failing to load (only two calls
+ * to this routine), and neither call can handle a return value.
+ * However, destroy_workqueue calls flush_workqueue, and that will
+ * block until all work is done. If the reason that stop_queue
+ * timed out is that the work will never finish, then it does no
+ * good to call destroy_workqueue, so return anyway. */
+ if (status != 0)
+ return status;
+
+ destroy_workqueue(pl022->workqueue);
+
+ return 0;
+}
+
+static int verify_controller_parameters(struct pl022 *pl022,
+ struct pl022_config_chip const *chip_info)
+{
+ if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
+ || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
+ dev_err(&pl022->adev->dev,
+ "interface is configured incorrectly\n");
+ return -EINVAL;
+ }
+ if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
+ (!pl022->vendor->unidir)) {
+ dev_err(&pl022->adev->dev,
+ "unidirectional mode not supported in this "
+ "hardware version\n");
+ return -EINVAL;
+ }
+ if ((chip_info->hierarchy != SSP_MASTER)
+ && (chip_info->hierarchy != SSP_SLAVE)) {
+ dev_err(&pl022->adev->dev,
+ "hierarchy is configured incorrectly\n");
+ return -EINVAL;
+ }
+ if ((chip_info->com_mode != INTERRUPT_TRANSFER)
+ && (chip_info->com_mode != DMA_TRANSFER)
+ && (chip_info->com_mode != POLLING_TRANSFER)) {
+ dev_err(&pl022->adev->dev,
+ "Communication mode is configured incorrectly\n");
+ return -EINVAL;
+ }
+ switch (chip_info->rx_lev_trig) {
+ case SSP_RX_1_OR_MORE_ELEM:
+ case SSP_RX_4_OR_MORE_ELEM:
+ case SSP_RX_8_OR_MORE_ELEM:
+ /* These are always OK, all variants can handle this */
+ break;
+ case SSP_RX_16_OR_MORE_ELEM:
+ if (pl022->vendor->fifodepth < 16) {
+ dev_err(&pl022->adev->dev,
+ "RX FIFO Trigger Level is configured incorrectly\n");
+ return -EINVAL;
+ }
+ break;
+ case SSP_RX_32_OR_MORE_ELEM:
+ if (pl022->vendor->fifodepth < 32) {
+ dev_err(&pl022->adev->dev,
+ "RX FIFO Trigger Level is configured incorrectly\n");
+ return -EINVAL;
+ }
+ break;
+ default:
+ dev_err(&pl022->adev->dev,
+ "RX FIFO Trigger Level is configured incorrectly\n");
+ return -EINVAL;
+ break;
+ }
+ switch (chip_info->tx_lev_trig) {
+ case SSP_TX_1_OR_MORE_EMPTY_LOC:
+ case SSP_TX_4_OR_MORE_EMPTY_LOC:
+ case SSP_TX_8_OR_MORE_EMPTY_LOC:
+ /* These are always OK, all variants can handle this */
+ break;
+ case SSP_TX_16_OR_MORE_EMPTY_LOC:
+ if (pl022->vendor->fifodepth < 16) {
+ dev_err(&pl022->adev->dev,
+ "TX FIFO Trigger Level is configured incorrectly\n");
+ return -EINVAL;
+ }
+ break;
+ case SSP_TX_32_OR_MORE_EMPTY_LOC:
+ if (pl022->vendor->fifodepth < 32) {
+ dev_err(&pl022->adev->dev,
+ "TX FIFO Trigger Level is configured incorrectly\n");
+ return -EINVAL;
+ }
+ break;
+ default:
+ dev_err(&pl022->adev->dev,
+ "TX FIFO Trigger Level is configured incorrectly\n");
+ return -EINVAL;
+ break;
+ }
+ if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
+ if ((chip_info->ctrl_len < SSP_BITS_4)
+ || (chip_info->ctrl_len > SSP_BITS_32)) {
+ dev_err(&pl022->adev->dev,
+ "CTRL LEN is configured incorrectly\n");
+ return -EINVAL;
+ }
+ if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
+ && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
+ dev_err(&pl022->adev->dev,
+ "Wait State is configured incorrectly\n");
+ return -EINVAL;
+ }
+ /* Half duplex is only available in the ST Micro version */
+ if (pl022->vendor->extended_cr) {
+ if ((chip_info->duplex !=
+ SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
+ && (chip_info->duplex !=
+ SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
+ dev_err(&pl022->adev->dev,
+ "Microwire duplex mode is configured incorrectly\n");
+ return -EINVAL;
+ }
+ } else {
+ if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
+ dev_err(&pl022->adev->dev,
+ "Microwire half duplex mode requested,"
+ " but this is only available in the"
+ " ST version of PL022\n");
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/**
+ * pl022_transfer - transfer function registered to SPI master framework
+ * @spi: spi device which is requesting transfer
+ * @msg: spi message which is to handled is queued to driver queue
+ *
+ * This function is registered to the SPI framework for this SPI master
+ * controller. It will queue the spi_message in the queue of driver if
+ * the queue is not stopped and return.
+ */
+static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
+{
+ struct pl022 *pl022 = spi_master_get_devdata(spi->master);
+ unsigned long flags;
+
+ spin_lock_irqsave(&pl022->queue_lock, flags);
+
+ if (!pl022->running) {
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+ return -ESHUTDOWN;
+ }
+ msg->actual_length = 0;
+ msg->status = -EINPROGRESS;
+ msg->state = STATE_START;
+
+ list_add_tail(&msg->queue, &pl022->queue);
+ if (pl022->running && !pl022->busy)
+ queue_work(pl022->workqueue, &pl022->pump_messages);
+
+ spin_unlock_irqrestore(&pl022->queue_lock, flags);
+ return 0;
+}
+
+static int calculate_effective_freq(struct pl022 *pl022,
+ int freq,
+ struct ssp_clock_params *clk_freq)
+{
+ /* Lets calculate the frequency parameters */
+ u16 cpsdvsr = 2;
+ u16 scr = 0;
+ bool freq_found = false;
+ u32 rate;
+ u32 max_tclk;
+ u32 min_tclk;
+
+ rate = clk_get_rate(pl022->clk);
+ /* cpsdvscr = 2 & scr 0 */
+ max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
+ /* cpsdvsr = 254 & scr = 255 */
+ min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
+
+ if ((freq <= max_tclk) && (freq >= min_tclk)) {
+ while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
+ while (scr <= SCR_MAX && !freq_found) {
+ if ((rate /
+ (cpsdvsr * (1 + scr))) > freq)
+ scr += 1;
+ else {
+ /*
+ * This bool is made true when
+ * effective frequency >=
+ * target frequency is found
+ */
+ freq_found = true;
+ if ((rate /
+ (cpsdvsr * (1 + scr))) != freq) {
+ if (scr == SCR_MIN) {
+ cpsdvsr -= 2;
+ scr = SCR_MAX;
+ } else
+ scr -= 1;
+ }
+ }
+ }
+ if (!freq_found) {
+ cpsdvsr += 2;
+ scr = SCR_MIN;
+ }
+ }
+ if (cpsdvsr != 0) {
+ dev_dbg(&pl022->adev->dev,
+ "SSP Effective Frequency is %u\n",
+ (rate / (cpsdvsr * (1 + scr))));
+ clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
+ clk_freq->scr = (u8) (scr & 0xFF);
+ dev_dbg(&pl022->adev->dev,
+ "SSP cpsdvsr = %d, scr = %d\n",
+ clk_freq->cpsdvsr, clk_freq->scr);
+ }
+ } else {
+ dev_err(&pl022->adev->dev,
+ "controller data is incorrect: out of range frequency");
+ return -EINVAL;
+ }
+ return 0;
+}
+
+
+/*
+ * A piece of default chip info unless the platform
+ * supplies it.
+ */
+static const struct pl022_config_chip pl022_default_chip_info = {
+ .com_mode = POLLING_TRANSFER,
+ .iface = SSP_INTERFACE_MOTOROLA_SPI,
+ .hierarchy = SSP_SLAVE,
+ .slave_tx_disable = DO_NOT_DRIVE_TX,
+ .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
+ .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
+ .ctrl_len = SSP_BITS_8,
+ .wait_state = SSP_MWIRE_WAIT_ZERO,
+ .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
+ .cs_control = null_cs_control,
+};
+
+
+/**
+ * pl022_setup - setup function registered to SPI master framework
+ * @spi: spi device which is requesting setup
+ *
+ * This function is registered to the SPI framework for this SPI master
+ * controller. If it is the first time when setup is called by this device,
+ * this function will initialize the runtime state for this chip and save
+ * the same in the device structure. Else it will update the runtime info
+ * with the updated chip info. Nothing is really being written to the
+ * controller hardware here, that is not done until the actual transfer
+ * commence.
+ */
+static int pl022_setup(struct spi_device *spi)
+{
+ struct pl022_config_chip const *chip_info;
+ struct chip_data *chip;
+ struct ssp_clock_params clk_freq = {0, };
+ int status = 0;
+ struct pl022 *pl022 = spi_master_get_devdata(spi->master);
+ unsigned int bits = spi->bits_per_word;
+ u32 tmp;
+
+ if (!spi->max_speed_hz)
+ return -EINVAL;
+
+ /* Get controller_state if one is supplied */
+ chip = spi_get_ctldata(spi);
+
+ if (chip == NULL) {
+ chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
+ if (!chip) {
+ dev_err(&spi->dev,
+ "cannot allocate controller state\n");
+ return -ENOMEM;
+ }
+ dev_dbg(&spi->dev,
+ "allocated memory for controller's runtime state\n");
+ }
+
+ /* Get controller data if one is supplied */
+ chip_info = spi->controller_data;
+
+ if (chip_info == NULL) {
+ chip_info = &pl022_default_chip_info;
+ /* spi_board_info.controller_data not is supplied */
+ dev_dbg(&spi->dev,
+ "using default controller_data settings\n");
+ } else
+ dev_dbg(&spi->dev,
+ "using user supplied controller_data settings\n");
+
+ /*
+ * We can override with custom divisors, else we use the board
+ * frequency setting
+ */
+ if ((0 == chip_info->clk_freq.cpsdvsr)
+ && (0 == chip_info->clk_freq.scr)) {
+ status = calculate_effective_freq(pl022,
+ spi->max_speed_hz,
+ &clk_freq);
+ if (status < 0)
+ goto err_config_params;
+ } else {
+ memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
+ if ((clk_freq.cpsdvsr % 2) != 0)
+ clk_freq.cpsdvsr =
+ clk_freq.cpsdvsr - 1;
+ }
+ if ((clk_freq.cpsdvsr < CPSDVR_MIN)
+ || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
++ status = -EINVAL;
+ dev_err(&spi->dev,
+ "cpsdvsr is configured incorrectly\n");
+ goto err_config_params;
+ }
+
+
+ status = verify_controller_parameters(pl022, chip_info);
+ if (status) {
+ dev_err(&spi->dev, "controller data is incorrect");
+ goto err_config_params;
+ }
+
+ pl022->rx_lev_trig = chip_info->rx_lev_trig;
+ pl022->tx_lev_trig = chip_info->tx_lev_trig;
+
+ /* Now set controller state based on controller data */
+ chip->xfer_type = chip_info->com_mode;
+ if (!chip_info->cs_control) {
+ chip->cs_control = null_cs_control;
+ dev_warn(&spi->dev,
+ "chip select function is NULL for this chip\n");
+ } else
+ chip->cs_control = chip_info->cs_control;
+
+ if (bits <= 3) {
+ /* PL022 doesn't support less than 4-bits */
+ status = -ENOTSUPP;
+ goto err_config_params;
+ } else if (bits <= 8) {
+ dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
+ chip->n_bytes = 1;
+ chip->read = READING_U8;
+ chip->write = WRITING_U8;
+ } else if (bits <= 16) {
+ dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
+ chip->n_bytes = 2;
+ chip->read = READING_U16;
+ chip->write = WRITING_U16;
+ } else {
+ if (pl022->vendor->max_bpw >= 32) {
+ dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
+ chip->n_bytes = 4;
+ chip->read = READING_U32;
+ chip->write = WRITING_U32;
+ } else {
+ dev_err(&spi->dev,
+ "illegal data size for this controller!\n");
+ dev_err(&spi->dev,
+ "a standard pl022 can only handle "
+ "1 <= n <= 16 bit words\n");
+ status = -ENOTSUPP;
+ goto err_config_params;
+ }
+ }
+
+ /* Now Initialize all register settings required for this chip */
+ chip->cr0 = 0;
+ chip->cr1 = 0;
+ chip->dmacr = 0;
+ chip->cpsr = 0;
+ if ((chip_info->com_mode == DMA_TRANSFER)
+ && ((pl022->master_info)->enable_dma)) {
+ chip->enable_dma = true;
+ dev_dbg(&spi->dev, "DMA mode set in controller state\n");
+ SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
+ SSP_DMACR_MASK_RXDMAE, 0);
+ SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
+ SSP_DMACR_MASK_TXDMAE, 1);
+ } else {
+ chip->enable_dma = false;
+ dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
+ SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
+ SSP_DMACR_MASK_RXDMAE, 0);
+ SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
+ SSP_DMACR_MASK_TXDMAE, 1);
+ }
+
+ chip->cpsr = clk_freq.cpsdvsr;
+
+ /* Special setup for the ST micro extended control registers */
+ if (pl022->vendor->extended_cr) {
+ u32 etx;
+
+ if (pl022->vendor->pl023) {
+ /* These bits are only in the PL023 */
+ SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
+ SSP_CR1_MASK_FBCLKDEL_ST, 13);
+ } else {
+ /* These bits are in the PL022 but not PL023 */
+ SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
+ SSP_CR0_MASK_HALFDUP_ST, 5);
+ SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
+ SSP_CR0_MASK_CSS_ST, 16);
+ SSP_WRITE_BITS(chip->cr0, chip_info->iface,
+ SSP_CR0_MASK_FRF_ST, 21);
+ SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
+ SSP_CR1_MASK_MWAIT_ST, 6);
+ }
+ SSP_WRITE_BITS(chip->cr0, bits - 1,
+ SSP_CR0_MASK_DSS_ST, 0);
+
+ if (spi->mode & SPI_LSB_FIRST) {
+ tmp = SSP_RX_LSB;
+ etx = SSP_TX_LSB;
+ } else {
+ tmp = SSP_RX_MSB;
+ etx = SSP_TX_MSB;
+ }
+ SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
+ SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
+ SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
+ SSP_CR1_MASK_RXIFLSEL_ST, 7);
+ SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
+ SSP_CR1_MASK_TXIFLSEL_ST, 10);
+ } else {
+ SSP_WRITE_BITS(chip->cr0, bits - 1,
+ SSP_CR0_MASK_DSS, 0);
+ SSP_WRITE_BITS(chip->cr0, chip_info->iface,
+ SSP_CR0_MASK_FRF, 4);
+ }
+
+ /* Stuff that is common for all versions */
+ if (spi->mode & SPI_CPOL)
+ tmp = SSP_CLK_POL_IDLE_HIGH;
+ else
+ tmp = SSP_CLK_POL_IDLE_LOW;
+ SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
+
+ if (spi->mode & SPI_CPHA)
+ tmp = SSP_CLK_SECOND_EDGE;
+ else
+ tmp = SSP_CLK_FIRST_EDGE;
+ SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
+
+ SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
+ /* Loopback is available on all versions except PL023 */
+ if (pl022->vendor->loopback) {
+ if (spi->mode & SPI_LOOP)
+ tmp = LOOPBACK_ENABLED;
+ else
+ tmp = LOOPBACK_DISABLED;
+ SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
+ }
+ SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
+ SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
+ SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
+
+ /* Save controller_state */
+ spi_set_ctldata(spi, chip);
+ return status;
+ err_config_params:
+ spi_set_ctldata(spi, NULL);
+ kfree(chip);
+ return status;
+}
+
+/**
+ * pl022_cleanup - cleanup function registered to SPI master framework
+ * @spi: spi device which is requesting cleanup
+ *
+ * This function is registered to the SPI framework for this SPI master
+ * controller. It will free the runtime state of chip.
+ */
+static void pl022_cleanup(struct spi_device *spi)
+{
+ struct chip_data *chip = spi_get_ctldata(spi);
+
+ spi_set_ctldata(spi, NULL);
+ kfree(chip);
+}
+
+
+static int __devinit
+pl022_probe(struct amba_device *adev, const struct amba_id *id)
+{
+ struct device *dev = &adev->dev;
+ struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
+ struct spi_master *master;
+ struct pl022 *pl022 = NULL; /*Data for this driver */
+ int status = 0;
+
+ dev_info(&adev->dev,
+ "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
+ if (platform_info == NULL) {
+ dev_err(&adev->dev, "probe - no platform data supplied\n");
+ status = -ENODEV;
+ goto err_no_pdata;
+ }
+
+ /* Allocate master with space for data */
+ master = spi_alloc_master(dev, sizeof(struct pl022));
+ if (master == NULL) {
+ dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
+ status = -ENOMEM;
+ goto err_no_master;
+ }
+
+ pl022 = spi_master_get_devdata(master);
+ pl022->master = master;
+ pl022->master_info = platform_info;
+ pl022->adev = adev;
+ pl022->vendor = id->data;
+
+ /*
+ * Bus Number Which has been Assigned to this SSP controller
+ * on this board
+ */
+ master->bus_num = platform_info->bus_id;
+ master->num_chipselect = platform_info->num_chipselect;
+ master->cleanup = pl022_cleanup;
+ master->setup = pl022_setup;
+ master->transfer = pl022_transfer;
+
+ /*
+ * Supports mode 0-3, loopback, and active low CS. Transfers are
+ * always MS bit first on the original pl022.
+ */
+ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
+ if (pl022->vendor->extended_cr)
+ master->mode_bits |= SPI_LSB_FIRST;
+
+ dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
+
+ status = amba_request_regions(adev, NULL);
+ if (status)
+ goto err_no_ioregion;
+
+ pl022->phybase = adev->res.start;
+ pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
+ if (pl022->virtbase == NULL) {
+ status = -ENOMEM;
+ goto err_no_ioremap;
+ }
+ printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
+ adev->res.start, pl022->virtbase);
+ pm_runtime_enable(dev);
+ pm_runtime_resume(dev);
+
+ pl022->clk = clk_get(&adev->dev, NULL);
+ if (IS_ERR(pl022->clk)) {
+ status = PTR_ERR(pl022->clk);
+ dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
+ goto err_no_clk;
+ }
+
+ /* Disable SSP */
+ writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
+ SSP_CR1(pl022->virtbase));
+ load_ssp_default_config(pl022);
+
+ status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
+ pl022);
+ if (status < 0) {
+ dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
+ goto err_no_irq;
+ }
+
+ /* Get DMA channels */
+ if (platform_info->enable_dma) {
+ status = pl022_dma_probe(pl022);
+ if (status != 0)
+ platform_info->enable_dma = 0;
+ }
+
+ /* Initialize and start queue */
+ status = init_queue(pl022);
+ if (status != 0) {
+ dev_err(&adev->dev, "probe - problem initializing queue\n");
+ goto err_init_queue;
+ }
+ status = start_queue(pl022);
+ if (status != 0) {
+ dev_err(&adev->dev, "probe - problem starting queue\n");
+ goto err_start_queue;
+ }
+ /* Register with the SPI framework */
+ amba_set_drvdata(adev, pl022);
+ status = spi_register_master(master);
+ if (status != 0) {
+ dev_err(&adev->dev,
+ "probe - problem registering spi master\n");
+ goto err_spi_register;
+ }
+ dev_dbg(dev, "probe succeeded\n");
+ /*
+ * Disable the silicon block pclk and any voltage domain and just
+ * power it up and clock it when it's needed
+ */
+ amba_pclk_disable(adev);
+ amba_vcore_disable(adev);
+ return 0;
+
+ err_spi_register:
+ err_start_queue:
+ err_init_queue:
+ destroy_queue(pl022);
+ pl022_dma_remove(pl022);
+ free_irq(adev->irq[0], pl022);
+ pm_runtime_disable(&adev->dev);
+ err_no_irq:
+ clk_put(pl022->clk);
+ err_no_clk:
+ iounmap(pl022->virtbase);
+ err_no_ioremap:
+ amba_release_regions(adev);
+ err_no_ioregion:
+ spi_master_put(master);
+ err_no_master:
+ err_no_pdata:
+ return status;
+}
+
+static int __devexit
+pl022_remove(struct amba_device *adev)
+{
+ struct pl022 *pl022 = amba_get_drvdata(adev);
+ int status = 0;
+ if (!pl022)
+ return 0;
+
+ /* Remove the queue */
+ status = destroy_queue(pl022);
+ if (status != 0) {
+ dev_err(&adev->dev,
+ "queue remove failed (%d)\n", status);
+ return status;
+ }
+ load_ssp_default_config(pl022);
+ pl022_dma_remove(pl022);
+ free_irq(adev->irq[0], pl022);
+ clk_disable(pl022->clk);
+ clk_put(pl022->clk);
+ iounmap(pl022->virtbase);
+ amba_release_regions(adev);
+ tasklet_disable(&pl022->pump_transfers);
+ spi_unregister_master(pl022->master);
+ spi_master_put(pl022->master);
+ amba_set_drvdata(adev, NULL);
+ dev_dbg(&adev->dev, "remove succeeded\n");
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int pl022_suspend(struct amba_device *adev, pm_message_t state)
+{
+ struct pl022 *pl022 = amba_get_drvdata(adev);
+ int status = 0;
+
+ status = stop_queue(pl022);
+ if (status) {
+ dev_warn(&adev->dev, "suspend cannot stop queue\n");
+ return status;
+ }
+
+ amba_vcore_enable(adev);
+ amba_pclk_enable(adev);
+ load_ssp_default_config(pl022);
+ amba_pclk_disable(adev);
+ amba_vcore_disable(adev);
+ dev_dbg(&adev->dev, "suspended\n");
+ return 0;
+}
+
+static int pl022_resume(struct amba_device *adev)
+{
+ struct pl022 *pl022 = amba_get_drvdata(adev);
+ int status = 0;
+
+ /* Start the queue running */
+ status = start_queue(pl022);
+ if (status)
+ dev_err(&adev->dev, "problem starting queue (%d)\n", status);
+ else
+ dev_dbg(&adev->dev, "resumed\n");
+
+ return status;
+}
+#else
+#define pl022_suspend NULL
+#define pl022_resume NULL
+#endif /* CONFIG_PM */
+
+static struct vendor_data vendor_arm = {
+ .fifodepth = 8,
+ .max_bpw = 16,
+ .unidir = false,
+ .extended_cr = false,
+ .pl023 = false,
+ .loopback = true,
+};
+
+
+static struct vendor_data vendor_st = {
+ .fifodepth = 32,
+ .max_bpw = 32,
+ .unidir = false,
+ .extended_cr = true,
+ .pl023 = false,
+ .loopback = true,
+};
+
+static struct vendor_data vendor_st_pl023 = {
+ .fifodepth = 32,
+ .max_bpw = 32,
+ .unidir = false,
+ .extended_cr = true,
+ .pl023 = true,
+ .loopback = false,
+};
+
+static struct vendor_data vendor_db5500_pl023 = {
+ .fifodepth = 32,
+ .max_bpw = 32,
+ .unidir = false,
+ .extended_cr = true,
+ .pl023 = true,
+ .loopback = true,
+};
+
+static struct amba_id pl022_ids[] = {
+ {
+ /*
+ * ARM PL022 variant, this has a 16bit wide
+ * and 8 locations deep TX/RX FIFO
+ */
+ .id = 0x00041022,
+ .mask = 0x000fffff,
+ .data = &vendor_arm,
+ },
+ {
+ /*
+ * ST Micro derivative, this has 32bit wide
+ * and 32 locations deep TX/RX FIFO
+ */
+ .id = 0x01080022,
+ .mask = 0xffffffff,
+ .data = &vendor_st,
+ },
+ {
+ /*
+ * ST-Ericsson derivative "PL023" (this is not
+ * an official ARM number), this is a PL022 SSP block
+ * stripped to SPI mode only, it has 32bit wide
+ * and 32 locations deep TX/RX FIFO but no extended
+ * CR0/CR1 register
+ */
+ .id = 0x00080023,
+ .mask = 0xffffffff,
+ .data = &vendor_st_pl023,
+ },
+ {
+ .id = 0x10080023,
+ .mask = 0xffffffff,
+ .data = &vendor_db5500_pl023,
+ },
+ { 0, 0 },
+};
+
+static struct amba_driver pl022_driver = {
+ .drv = {
+ .name = "ssp-pl022",
+ },
+ .id_table = pl022_ids,
+ .probe = pl022_probe,
+ .remove = __devexit_p(pl022_remove),
+ .suspend = pl022_suspend,
+ .resume = pl022_resume,
+};
+
+
+static int __init pl022_init(void)
+{
+ return amba_driver_register(&pl022_driver);
+}
+
+subsys_initcall(pl022_init);
+
+static void __exit pl022_exit(void)
+{
+ amba_driver_unregister(&pl022_driver);
+}
+
+module_exit(pl022_exit);
+
+MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
+MODULE_DESCRIPTION("PL022 SSP Controller Driver");
+MODULE_LICENSE("GPL");