From: Linus Torvalds Date: Fri, 6 Apr 2018 19:15:41 +0000 (-0700) Subject: Merge tag 'mtd/for-4.17' of git://git.infradead.org/linux-mtd X-Git-Url: http://git.cdn.openwrt.org/?a=commitdiff_plain;h=3fd14cdcc05a682b03743683ce3a726898b20555;p=openwrt%2Fstaging%2Fblogic.git Merge tag 'mtd/for-4.17' of git://git.infradead.org/linux-mtd Pull MTD updates from Boris Brezillon: "MTD Core: - Remove support for asynchronous erase (not implemented by any of the existing drivers anyway) - Remove Cyrille from the list of SPI NOR and MTD maintainers - Fix kernel doc headers - Allow users to define the partitions parsers they want to test through a DT property (compatible of the partitions subnode) - Remove the bfin-async-flash driver (the only architecture using it has been removed) - Fix pagetest test - Add extra checks in mtd_erase() - Simplify the MTD partition creation logic and get rid of mtd_add_device_partitions() MTD Drivers: - Add endianness information to the physmap DT binding - Add Eon EN29LV400A IDs to JEDEC probe logic - Use %*ph where appropriate SPI NOR Drivers: - Make fsl-quaspi assign different names to MTD devices connected to the same QSPI controller - Remove an unneeded driver.bus assigned in the fsl-qspi driver NAND Core: - Prepare arrival of the SPI NAND subsystem by implementing a generic (interface-agnostic) layer to ease manipulation of NAND devices - Move onenand code base to the drivers/mtd/nand/ dir - Rework timing mode selection - Provide a generic way for NAND chip drivers to flag a specific GET/SET FEATURE operation as supported/unsupported - Stop embedding ONFI/JEDEC param page in nand_chip NAND Drivers: - Rework/cleanup of the mxc driver - Various cleanups in the vf610 driver - Migrate the fsmc and vf610 to ->exec_op() - Get rid of the pxa driver (replaced by marvell_nand) - Support ->setup_data_interface() in the GPMI driver - Fix probe error path in several drivers - Remove support for unused hw_syndrome mode in sunxi_nand - Various minor improvements" * tag 'mtd/for-4.17' of git://git.infradead.org/linux-mtd: (89 commits) dt-bindings: fsl-quadspi: Add the example of two SPI NOR mtd: fsl-quadspi: Distinguish the mtd device names mtd: nand: Fix some function description mismatches in core.c mtd: fsl-quadspi: Remove unneeded driver.bus assignment mtd: rawnand: marvell: Rename ->ecc_clk into ->core_clk mtd: rawnand: s3c2410: enhance the probe function error path mtd: rawnand: tango: fix probe function error path mtd: rawnand: sh_flctl: fix the probe function error path mtd: rawnand: omap2: fix the probe function error path mtd: rawnand: mxc: fix probe function error path mtd: rawnand: denali: fix probe function error path mtd: rawnand: davinci: fix probe function error path mtd: rawnand: cafe: fix probe function error path mtd: rawnand: brcmnand: fix probe function error path mtd: rawnand: sunxi: Stop supporting ECC_HW_SYNDROME mode mtd: rawnand: marvell: Fix clock resource by adding a register clock mtd: ftl: Use DIV_ROUND_UP() mtd: Fix some function description mismatches in mtdcore.c mtd: physmap_of: update struct map_info's swap as per map requirement dt-bindings: mtd-physmap: Add endianness supports ... --- 3fd14cdcc05a682b03743683ce3a726898b20555 diff --cc Documentation/driver-api/gpio/drivers-on-gpio.rst index 019483868977,000000000000..7da0c1dd1f7a mode 100644,000000..100644 --- a/Documentation/driver-api/gpio/drivers-on-gpio.rst +++ b/Documentation/driver-api/gpio/drivers-on-gpio.rst @@@ -1,97 -1,0 +1,97 @@@ +============================ +Subsystem drivers using GPIO +============================ + +Note that standard kernel drivers exist for common GPIO tasks and will provide +the right in-kernel and userspace APIs/ABIs for the job, and that these +drivers can quite easily interconnect with other kernel subsystems using +hardware descriptions such as device tree or ACPI: + +- leds-gpio: drivers/leds/leds-gpio.c will handle LEDs connected to GPIO + lines, giving you the LED sysfs interface + +- ledtrig-gpio: drivers/leds/trigger/ledtrig-gpio.c will provide a LED trigger, + i.e. a LED will turn on/off in response to a GPIO line going high or low + (and that LED may in turn use the leds-gpio as per above). + +- gpio-keys: drivers/input/keyboard/gpio_keys.c is used when your GPIO line + can generate interrupts in response to a key press. Also supports debounce. + +- gpio-keys-polled: drivers/input/keyboard/gpio_keys_polled.c is used when your + GPIO line cannot generate interrupts, so it needs to be periodically polled + by a timer. + +- gpio_mouse: drivers/input/mouse/gpio_mouse.c is used to provide a mouse with + up to three buttons by simply using GPIOs and no mouse port. You can cut the + mouse cable and connect the wires to GPIO lines or solder a mouse connector + to the lines for a more permanent solution of this type. + +- gpio-beeper: drivers/input/misc/gpio-beeper.c is used to provide a beep from + an external speaker connected to a GPIO line. + +- extcon-gpio: drivers/extcon/extcon-gpio.c is used when you need to read an + external connector status, such as a headset line for an audio driver or an + HDMI connector. It will provide a better userspace sysfs interface than GPIO. + +- restart-gpio: drivers/power/reset/gpio-restart.c is used to restart/reboot + the system by pulling a GPIO line and will register a restart handler so + userspace can issue the right system call to restart the system. + +- poweroff-gpio: drivers/power/reset/gpio-poweroff.c is used to power the + system down by pulling a GPIO line and will register a pm_power_off() + callback so that userspace can issue the right system call to power down the + system. + +- gpio-gate-clock: drivers/clk/clk-gpio.c is used to control a gated clock + (off/on) that uses a GPIO, and integrated with the clock subsystem. + +- i2c-gpio: drivers/i2c/busses/i2c-gpio.c is used to drive an I2C bus + (two wires, SDA and SCL lines) by hammering (bitbang) two GPIO lines. It will + appear as any other I2C bus to the system and makes it possible to connect + drivers for the I2C devices on the bus like any other I2C bus driver. + +- spi_gpio: drivers/spi/spi-gpio.c is used to drive an SPI bus (variable number + of wires, at least SCK and optionally MISO, MOSI and chip select lines) using + GPIO hammering (bitbang). It will appear as any other SPI bus on the system + and makes it possible to connect drivers for SPI devices on the bus like + any other SPI bus driver. For example any MMC/SD card can then be connected + to this SPI by using the mmc_spi host from the MMC/SD card subsystem. + +- w1-gpio: drivers/w1/masters/w1-gpio.c is used to drive a one-wire bus using + a GPIO line, integrating with the W1 subsystem and handling devices on + the bus like any other W1 device. + +- gpio-fan: drivers/hwmon/gpio-fan.c is used to control a fan for cooling the + system, connected to a GPIO line (and optionally a GPIO alarm line), + presenting all the right in-kernel and sysfs interfaces to make your system + not overheat. + +- gpio-regulator: drivers/regulator/gpio-regulator.c is used to control a + regulator providing a certain voltage by pulling a GPIO line, integrating + with the regulator subsystem and giving you all the right interfaces. + +- gpio-wdt: drivers/watchdog/gpio_wdt.c is used to provide a watchdog timer + that will periodically "ping" a hardware connected to a GPIO line by toggling + it from 1-to-0-to-1. If that hardware does not receive its "ping" + periodically, it will reset the system. + - - gpio-nand: drivers/mtd/nand/gpio.c is used to connect a NAND flash chip to - a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the ++- gpio-nand: drivers/mtd/nand/raw/gpio.c is used to connect a NAND flash chip ++ to a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the + NAND flash MTD subsystem and provides chip access and partition parsing like + any other NAND driving hardware. + +- ps2-gpio: drivers/input/serio/ps2-gpio.c is used to drive a PS/2 (IBM) serio + bus, data and clock line, by bit banging two GPIO lines. It will appear as + any other serio bus to the system and makes it possible to connect drivers + for e.g. keyboards and other PS/2 protocol based devices. + +Apart from this there are special GPIO drivers in subsystems like MMC/SD to +read card detect and write protect GPIO lines, and in the TTY serial subsystem +to emulate MCTRL (modem control) signals CTS/RTS by using two GPIO lines. The +MTD NOR flash has add-ons for extra GPIO lines too, though the address bus is +usually connected directly to the flash. + +Use those instead of talking directly to the GPIOs using sysfs; they integrate +with kernel frameworks better than your userspace code could. Needless to say, +just using the appropriate kernel drivers will simplify and speed up your +embedded hacking in particular by providing ready-made components. diff --cc MAINTAINERS index c6973001bf3c,ce3519e1c18c..881d328020df --- a/MAINTAINERS +++ b/MAINTAINERS @@@ -4091,10 -4116,10 +4091,10 @@@ DENALI NAND DRIVE M: Masahiro Yamada L: linux-mtd@lists.infradead.org S: Supported - F: drivers/mtd/nand/denali* + F: drivers/mtd/nand/raw/denali* DESIGNWARE USB2 DRD IP DRIVER -M: John Youn +M: Minas Harutyunyan L: linux-usb@vger.kernel.org T: git git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb.git S: Maintained diff --cc drivers/mtd/nand/raw/atmel/pmecc.c index 000000000000,9de29c9afb0c..555a74e15269 mode 000000,100644..100644 --- a/drivers/mtd/nand/raw/atmel/pmecc.c +++ b/drivers/mtd/nand/raw/atmel/pmecc.c @@@ -1,0 -1,1012 +1,1012 @@@ + /* + * Copyright 2017 ATMEL + * Copyright 2017 Free Electrons + * + * Author: Boris Brezillon + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) + * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c (removed in v3.8) + * Copyright 2000 Steven J. Hill (sjhill@cotw.com) + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * The PMECC is an hardware assisted BCH engine, which means part of the + * ECC algorithm is left to the software. The hardware/software repartition + * is explained in the "PMECC Controller Functional Description" chapter in + * Atmel datasheets, and some of the functions in this file are directly + * implementing the algorithms described in the "Software Implementation" + * sub-section. + * + * TODO: it seems that the software BCH implementation in lib/bch.c is already + * providing some of the logic we are implementing here. It would be smart + * to expose the needed lib/bch.c helpers/functions and re-use them here. + */ + + #include + #include + #include + #include + #include + #include + #include + #include + + #include "pmecc.h" + + /* Galois field dimension */ + #define PMECC_GF_DIMENSION_13 13 + #define PMECC_GF_DIMENSION_14 14 + + /* Primitive Polynomial used by PMECC */ + #define PMECC_GF_13_PRIMITIVE_POLY 0x201b + #define PMECC_GF_14_PRIMITIVE_POLY 0x4443 + + #define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 + #define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 + + /* Time out value for reading PMECC status register */ + #define PMECC_MAX_TIMEOUT_MS 100 + + /* PMECC Register Definitions */ + #define ATMEL_PMECC_CFG 0x0 + #define PMECC_CFG_BCH_STRENGTH(x) (x) + #define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0) + #define PMECC_CFG_SECTOR512 (0 << 4) + #define PMECC_CFG_SECTOR1024 (1 << 4) + #define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8) + #define PMECC_CFG_READ_OP (0 << 12) + #define PMECC_CFG_WRITE_OP (1 << 12) + #define PMECC_CFG_SPARE_ENABLE BIT(16) + #define PMECC_CFG_AUTO_ENABLE BIT(20) + + #define ATMEL_PMECC_SAREA 0x4 + #define ATMEL_PMECC_SADDR 0x8 + #define ATMEL_PMECC_EADDR 0xc + + #define ATMEL_PMECC_CLK 0x10 + #define PMECC_CLK_133MHZ (2 << 0) + + #define ATMEL_PMECC_CTRL 0x14 + #define PMECC_CTRL_RST BIT(0) + #define PMECC_CTRL_DATA BIT(1) + #define PMECC_CTRL_USER BIT(2) + #define PMECC_CTRL_ENABLE BIT(4) + #define PMECC_CTRL_DISABLE BIT(5) + + #define ATMEL_PMECC_SR 0x18 + #define PMECC_SR_BUSY BIT(0) + #define PMECC_SR_ENABLE BIT(4) + + #define ATMEL_PMECC_IER 0x1c + #define ATMEL_PMECC_IDR 0x20 + #define ATMEL_PMECC_IMR 0x24 + #define ATMEL_PMECC_ISR 0x28 + #define PMECC_ERROR_INT BIT(0) + + #define ATMEL_PMECC_ECC(sector, n) \ + ((((sector) + 1) * 0x40) + (n)) + + #define ATMEL_PMECC_REM(sector, n) \ + ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200) + + /* PMERRLOC Register Definitions */ + #define ATMEL_PMERRLOC_ELCFG 0x0 + #define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) + #define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) + #define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) + + #define ATMEL_PMERRLOC_ELPRIM 0x4 + #define ATMEL_PMERRLOC_ELEN 0x8 + #define ATMEL_PMERRLOC_ELDIS 0xc + #define PMERRLOC_DISABLE BIT(0) + + #define ATMEL_PMERRLOC_ELSR 0x10 + #define PMERRLOC_ELSR_BUSY BIT(0) + + #define ATMEL_PMERRLOC_ELIER 0x14 + #define ATMEL_PMERRLOC_ELIDR 0x18 + #define ATMEL_PMERRLOC_ELIMR 0x1c + #define ATMEL_PMERRLOC_ELISR 0x20 + #define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8) + #define PMERRLOC_CALC_DONE BIT(0) + + #define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28) + + #define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs)) + + struct atmel_pmecc_gf_tables { + u16 *alpha_to; + u16 *index_of; + }; + + struct atmel_pmecc_caps { + const int *strengths; + int nstrengths; + int el_offset; + bool correct_erased_chunks; + }; + + struct atmel_pmecc { + struct device *dev; + const struct atmel_pmecc_caps *caps; + + struct { + void __iomem *base; + void __iomem *errloc; + } regs; + + struct mutex lock; + }; + + struct atmel_pmecc_user_conf_cache { + u32 cfg; + u32 sarea; + u32 saddr; + u32 eaddr; + }; + + struct atmel_pmecc_user { + struct atmel_pmecc_user_conf_cache cache; + struct atmel_pmecc *pmecc; + const struct atmel_pmecc_gf_tables *gf_tables; + int eccbytes; + s16 *partial_syn; + s16 *si; + s16 *lmu; + s16 *smu; + s32 *mu; + s32 *dmu; + s32 *delta; + u32 isr; + }; + + static DEFINE_MUTEX(pmecc_gf_tables_lock); + static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512; + static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024; + + static inline int deg(unsigned int poly) + { + /* polynomial degree is the most-significant bit index */ + return fls(poly) - 1; + } + + static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly, + struct atmel_pmecc_gf_tables *gf_tables) + { + unsigned int i, x = 1; + const unsigned int k = BIT(deg(poly)); + unsigned int nn = BIT(mm) - 1; + + /* primitive polynomial must be of degree m */ + if (k != (1u << mm)) + return -EINVAL; + + for (i = 0; i < nn; i++) { + gf_tables->alpha_to[i] = x; + gf_tables->index_of[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0alpha_to[nn] = 1; + gf_tables->index_of[0] = 0; + + return 0; + } + + static const struct atmel_pmecc_gf_tables * + atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req) + { + struct atmel_pmecc_gf_tables *gf_tables; + unsigned int poly, degree, table_size; + int ret; + + if (req->ecc.sectorsize == 512) { + degree = PMECC_GF_DIMENSION_13; + poly = PMECC_GF_13_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_512; + } else { + degree = PMECC_GF_DIMENSION_14; + poly = PMECC_GF_14_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_1024; + } + + gf_tables = kzalloc(sizeof(*gf_tables) + + (2 * table_size * sizeof(u16)), + GFP_KERNEL); + if (!gf_tables) + return ERR_PTR(-ENOMEM); + + gf_tables->alpha_to = (void *)(gf_tables + 1); + gf_tables->index_of = gf_tables->alpha_to + table_size; + + ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables); + if (ret) { + kfree(gf_tables); + return ERR_PTR(ret); + } + + return gf_tables; + } + + static const struct atmel_pmecc_gf_tables * + atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req) + { + const struct atmel_pmecc_gf_tables **gf_tables, *ret; + + mutex_lock(&pmecc_gf_tables_lock); + if (req->ecc.sectorsize == 512) + gf_tables = &pmecc_gf_tables_512; + else + gf_tables = &pmecc_gf_tables_1024; + + ret = *gf_tables; + + if (!ret) { + ret = atmel_pmecc_create_gf_tables(req); + if (!IS_ERR(ret)) + *gf_tables = ret; + } + mutex_unlock(&pmecc_gf_tables_lock); + + return ret; + } + + static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) + { + int i, max_eccbytes, eccbytes = 0, eccstrength = 0; + + if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0) + return -EINVAL; + + if (req->ecc.ooboffset >= 0 && + req->ecc.ooboffset + req->ecc.bytes > req->oobsize) + return -EINVAL; + + if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) { + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + return -EINVAL; + + if (req->pagesize > 512) + req->ecc.sectorsize = 1024; + else + req->ecc.sectorsize = 512; + } + + if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024) + return -EINVAL; + + if (req->pagesize % req->ecc.sectorsize) + return -EINVAL; + + req->ecc.nsectors = req->pagesize / req->ecc.sectorsize; + + max_eccbytes = req->ecc.bytes; + + for (i = 0; i < pmecc->caps->nstrengths; i++) { + int nbytes, strength = pmecc->caps->strengths[i]; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH && + strength < req->ecc.strength) + continue; + + nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize), + 8); + nbytes *= req->ecc.nsectors; + + if (nbytes > max_eccbytes) + break; + + eccstrength = strength; + eccbytes = nbytes; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + break; + } + + if (!eccstrength) + return -EINVAL; + + req->ecc.bytes = eccbytes; + req->ecc.strength = eccstrength; + + if (req->ecc.ooboffset < 0) + req->ecc.ooboffset = req->oobsize - eccbytes; + + return 0; + } + + struct atmel_pmecc_user * + atmel_pmecc_create_user(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) + { + struct atmel_pmecc_user *user; + const struct atmel_pmecc_gf_tables *gf_tables; + int strength, size, ret; + + ret = atmel_pmecc_prepare_user_req(pmecc, req); + if (ret) + return ERR_PTR(ret); + + size = sizeof(*user); + size = ALIGN(size, sizeof(u16)); + /* Reserve space for partial_syn, si and smu */ + size += ((2 * req->ecc.strength) + 1) * sizeof(u16) * + (2 + req->ecc.strength + 2); + /* Reserve space for lmu. */ + size += (req->ecc.strength + 1) * sizeof(u16); + /* Reserve space for mu, dmu and delta. */ + size = ALIGN(size, sizeof(s32)); + size += (req->ecc.strength + 1) * sizeof(s32) * 3; + + user = kzalloc(size, GFP_KERNEL); + if (!user) + return ERR_PTR(-ENOMEM); + + user->pmecc = pmecc; + + user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16)); + user->si = user->partial_syn + ((2 * req->ecc.strength) + 1); + user->lmu = user->si + ((2 * req->ecc.strength) + 1); + user->smu = user->lmu + (req->ecc.strength + 1); + user->mu = (s32 *)PTR_ALIGN(user->smu + + (((2 * req->ecc.strength) + 1) * + (req->ecc.strength + 2)), + sizeof(s32)); + user->dmu = user->mu + req->ecc.strength + 1; + user->delta = user->dmu + req->ecc.strength + 1; + + gf_tables = atmel_pmecc_get_gf_tables(req); + if (IS_ERR(gf_tables)) { + kfree(user); + return ERR_CAST(gf_tables); + } + + user->gf_tables = gf_tables; + + user->eccbytes = req->ecc.bytes / req->ecc.nsectors; + + for (strength = 0; strength < pmecc->caps->nstrengths; strength++) { + if (pmecc->caps->strengths[strength] == req->ecc.strength) + break; + } + + user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) | + PMECC_CFG_NSECTORS(req->ecc.nsectors); + + if (req->ecc.sectorsize == 1024) + user->cache.cfg |= PMECC_CFG_SECTOR1024; + + user->cache.sarea = req->oobsize - 1; + user->cache.saddr = req->ecc.ooboffset; + user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1; + + return user; + } + EXPORT_SYMBOL_GPL(atmel_pmecc_create_user); + + void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user) + { + kfree(user); + } + EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user); + + static int get_strength(struct atmel_pmecc_user *user) + { + const int *strengths = user->pmecc->caps->strengths; + + return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK]; + } + + static int get_sectorsize(struct atmel_pmecc_user *user) + { - return user->cache.cfg & PMECC_LOOKUP_TABLE_SIZE_1024 ? 1024 : 512; ++ return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512; + } + + static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector) + { + int strength = get_strength(user); + u32 value; + int i; + + /* Fill odd syndromes */ + for (i = 0; i < strength; i++) { + value = readl_relaxed(user->pmecc->regs.base + + ATMEL_PMECC_REM(sector, i / 2)); + if (i & 1) + value >>= 16; + + user->partial_syn[(2 * i) + 1] = value; + } + } + + static void atmel_pmecc_substitute(struct atmel_pmecc_user *user) + { + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + s16 *alpha_to = user->gf_tables->alpha_to; + s16 *index_of = user->gf_tables->index_of; + s16 *partial_syn = user->partial_syn; + s16 *si; + int i, j; + + /* + * si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = user->si; + + memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * strength; i += 2) { + for (j = 0; j < degree; j++) { + if (partial_syn[i] & BIT(j)) + si[i] = alpha_to[i * j] ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= strength; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + s16 tmp; + + tmp = index_of[si[j]]; + tmp = (tmp * 2) % cw_len; + si[i] = alpha_to[tmp]; + } + } + } + + static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user) + { + s16 *lmu = user->lmu; + s16 *si = user->si; + s32 *mu = user->mu; + s32 *dmu = user->dmu; + s32 *delta = user->delta; + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + int num = 2 * strength + 1; + s16 *index_of = user->gf_tables->index_of; + s16 *alpha_to = user->gf_tables->alpha_to; + int i, j, k; + u32 dmu_0_count, tmp; + s16 *smu = user->smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + memset(smu, 0, sizeof(s16) * num); + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + delta[0] = (mu[0] * 2 - lmu[0]) >> 1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + memset(&smu[num], 0, sizeof(s16) * num); + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + delta[1] = (mu[1] * 2 - lmu[1]) >> 1; + + /* Init the Sigma(x) last row */ + memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num); + + for (i = 1; i <= strength; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((strength - (lmu[i] >> 1) - 1) / 2); + if ((strength - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(strength + 1) * num + j] = + smu[i * num + j]; + + lmu[strength + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + s16 a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + + a = index_of[dmu[i]]; + b = index_of[dmu[ro]]; + c = index_of[smu[ro * num + k]]; + tmp = a + (cw_len - b) + c; + a = alpha_to[tmp % cw_len]; + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= strength) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + s16 a, b, c; + + a = index_of[smu[(i + 1) * num + k]]; + b = si[2 * (i - 1) + 3 - k]; + c = index_of[b]; + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1]; + } + } + } + } + + static int atmel_pmecc_err_location(struct atmel_pmecc_user *user) + { + int sector_size = get_sectorsize(user); + int degree = sector_size == 512 ? 13 : 14; + struct atmel_pmecc *pmecc = user->pmecc; + int strength = get_strength(user); + int ret, roots_nbr, i, err_nbr = 0; + int num = (2 * strength) + 1; + s16 *smu = user->smu; + u32 val; + + writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS); + + for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) { + writel_relaxed(smu[(strength + 1) * num + i], + pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i)); + err_nbr++; + } + + val = (err_nbr - 1) << 16; + if (sector_size == 1024) + val |= 1; + + writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG); + writel((sector_size * 8) + (degree * strength), + pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN); + + ret = readl_relaxed_poll_timeout(pmecc->regs.errloc + + ATMEL_PMERRLOC_ELISR, + val, val & PMERRLOC_CALC_DONE, 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "PMECC: Timeout to calculate error location.\n"); + return ret; + } + + roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == user->lmu[strength + 1] >> 1) + return err_nbr - 1; + + /* + * Number of roots does not match the degree of smu + * unable to correct error. + */ + return -EBADMSG; + } + + int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, + void *data, void *ecc) + { + struct atmel_pmecc *pmecc = user->pmecc; + int sectorsize = get_sectorsize(user); + int eccbytes = user->eccbytes; + int i, nerrors; + + if (!(user->isr & BIT(sector))) + return 0; + + atmel_pmecc_gen_syndrome(user, sector); + atmel_pmecc_substitute(user); + atmel_pmecc_get_sigma(user); + + nerrors = atmel_pmecc_err_location(user); + if (nerrors < 0) + return nerrors; + + for (i = 0; i < nerrors; i++) { + const char *area; + int byte, bit; + u32 errpos; + u8 *ptr; + + errpos = readl_relaxed(pmecc->regs.errloc + + ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i)); + errpos--; + + byte = errpos / 8; + bit = errpos % 8; + + if (byte < sectorsize) { + ptr = data + byte; + area = "data"; + } else if (byte < sectorsize + eccbytes) { + ptr = ecc + byte - sectorsize; + area = "ECC"; + } else { + dev_dbg(pmecc->dev, + "Invalid errpos value (%d, max is %d)\n", + errpos, (sectorsize + eccbytes) * 8); + return -EINVAL; + } + + dev_dbg(pmecc->dev, + "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n", + area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit))); + + *ptr ^= BIT(bit); + } + + return nerrors; + } + EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector); + + bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user) + { + return user->pmecc->caps->correct_erased_chunks; + } + EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks); + + void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, + int sector, void *ecc) + { + struct atmel_pmecc *pmecc = user->pmecc; + u8 *ptr = ecc; + int i; + + for (i = 0; i < user->eccbytes; i++) + ptr[i] = readb_relaxed(pmecc->regs.base + + ATMEL_PMECC_ECC(sector, i)); + } + EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes); + + void atmel_pmecc_reset(struct atmel_pmecc *pmecc) + { + writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); + } + EXPORT_SYMBOL_GPL(atmel_pmecc_reset); + + int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op) + { + struct atmel_pmecc *pmecc = user->pmecc; + u32 cfg; + + if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) { + dev_err(pmecc->dev, "Bad ECC operation!"); + return -EINVAL; + } + + mutex_lock(&user->pmecc->lock); + + cfg = user->cache.cfg; + if (op == NAND_ECC_WRITE) + cfg |= PMECC_CFG_WRITE_OP; + else + cfg |= PMECC_CFG_AUTO_ENABLE; + + writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG); + writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA); + writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR); + writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR); + + writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL); + + return 0; + } + EXPORT_SYMBOL_GPL(atmel_pmecc_enable); + + void atmel_pmecc_disable(struct atmel_pmecc_user *user) + { + atmel_pmecc_reset(user->pmecc); + mutex_unlock(&user->pmecc->lock); + } + EXPORT_SYMBOL_GPL(atmel_pmecc_disable); + + int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user) + { + struct atmel_pmecc *pmecc = user->pmecc; + u32 status; + int ret; + + ret = readl_relaxed_poll_timeout(pmecc->regs.base + + ATMEL_PMECC_SR, + status, !(status & PMECC_SR_BUSY), 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "Timeout while waiting for PMECC ready.\n"); + return ret; + } + + user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR); + + return 0; + } + EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy); + + static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev, + const struct atmel_pmecc_caps *caps, + int pmecc_res_idx, int errloc_res_idx) + { + struct device *dev = &pdev->dev; + struct atmel_pmecc *pmecc; + struct resource *res; + + pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL); + if (!pmecc) + return ERR_PTR(-ENOMEM); + + pmecc->caps = caps; + pmecc->dev = dev; + mutex_init(&pmecc->lock); + + res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx); + pmecc->regs.base = devm_ioremap_resource(dev, res); + if (IS_ERR(pmecc->regs.base)) + return ERR_CAST(pmecc->regs.base); + + res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx); + pmecc->regs.errloc = devm_ioremap_resource(dev, res); + if (IS_ERR(pmecc->regs.errloc)) + return ERR_CAST(pmecc->regs.errloc); + + /* Disable all interrupts before registering the PMECC handler. */ + writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR); + atmel_pmecc_reset(pmecc); + + return pmecc; + } + + static void devm_atmel_pmecc_put(struct device *dev, void *res) + { + struct atmel_pmecc **pmecc = res; + + put_device((*pmecc)->dev); + } + + static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev, + struct device_node *np) + { + struct platform_device *pdev; + struct atmel_pmecc *pmecc, **ptr; + + pdev = of_find_device_by_node(np); + if (!pdev || !platform_get_drvdata(pdev)) + return ERR_PTR(-EPROBE_DEFER); + + ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL); + if (!ptr) + return ERR_PTR(-ENOMEM); + + get_device(&pdev->dev); + pmecc = platform_get_drvdata(pdev); + + *ptr = pmecc; + + devres_add(userdev, ptr); + + return pmecc; + } + + static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 }; + + static struct atmel_pmecc_caps at91sam9g45_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, + }; + + static struct atmel_pmecc_caps sama5d4_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, + .correct_erased_chunks = true, + }; + + static struct atmel_pmecc_caps sama5d2_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 6, + .el_offset = 0xac, + .correct_erased_chunks = true, + }; + + static const struct of_device_id atmel_pmecc_legacy_match[] = { + { .compatible = "atmel,sama5d4-nand", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-nand", &sama5d2_caps }, + { /* sentinel */ } + }; + + struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev) + { + struct atmel_pmecc *pmecc; + struct device_node *np; + + if (!userdev) + return ERR_PTR(-EINVAL); + + if (!userdev->of_node) + return NULL; + + np = of_parse_phandle(userdev->of_node, "ecc-engine", 0); + if (np) { + pmecc = atmel_pmecc_get_by_node(userdev, np); + of_node_put(np); + } else { + /* + * Support old DT bindings: in this case the PMECC iomem + * resources are directly defined in the user pdev at position + * 1 and 2. Extract all relevant information from there. + */ + struct platform_device *pdev = to_platform_device(userdev); + const struct atmel_pmecc_caps *caps; + const struct of_device_id *match; + + /* No PMECC engine available. */ + if (!of_property_read_bool(userdev->of_node, + "atmel,has-pmecc")) + return NULL; + + caps = &at91sam9g45_caps; + + /* Find the caps associated to the NAND dev node. */ + match = of_match_node(atmel_pmecc_legacy_match, + userdev->of_node); + if (match && match->data) + caps = match->data; + + pmecc = atmel_pmecc_create(pdev, caps, 1, 2); + } + + return pmecc; + } + EXPORT_SYMBOL(devm_atmel_pmecc_get); + + static const struct of_device_id atmel_pmecc_match[] = { + { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps }, + { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps }, + { /* sentinel */ } + }; + MODULE_DEVICE_TABLE(of, atmel_pmecc_match); + + static int atmel_pmecc_probe(struct platform_device *pdev) + { + struct device *dev = &pdev->dev; + const struct atmel_pmecc_caps *caps; + struct atmel_pmecc *pmecc; + + caps = of_device_get_match_data(&pdev->dev); + if (!caps) { + dev_err(dev, "Invalid caps\n"); + return -EINVAL; + } + + pmecc = atmel_pmecc_create(pdev, caps, 0, 1); + if (IS_ERR(pmecc)) + return PTR_ERR(pmecc); + + platform_set_drvdata(pdev, pmecc); + + return 0; + } + + static struct platform_driver atmel_pmecc_driver = { + .driver = { + .name = "atmel-pmecc", + .of_match_table = of_match_ptr(atmel_pmecc_match), + }, + .probe = atmel_pmecc_probe, + }; + module_platform_driver(atmel_pmecc_driver); + + MODULE_LICENSE("GPL"); + MODULE_AUTHOR("Boris Brezillon "); + MODULE_DESCRIPTION("PMECC engine driver"); + MODULE_ALIAS("platform:atmel_pmecc"); diff --cc drivers/mtd/nand/raw/fsl_ifc_nand.c index 000000000000,7ca678f05ae3..61aae0224078 mode 000000,100644..100644 --- a/drivers/mtd/nand/raw/fsl_ifc_nand.c +++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c @@@ -1,0 -1,1117 +1,1111 @@@ + /* + * Freescale Integrated Flash Controller NAND driver + * + * Copyright 2011-2012 Freescale Semiconductor, Inc + * + * Author: Dipen Dudhat + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + + #define ERR_BYTE 0xFF /* Value returned for read + bytes when read failed */ + #define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait + for IFC NAND Machine */ + + struct fsl_ifc_ctrl; + + /* mtd information per set */ + struct fsl_ifc_mtd { + struct nand_chip chip; + struct fsl_ifc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ + u8 __iomem *vbase; /* Chip select base virtual address */ + }; + + /* overview of the fsl ifc controller */ + struct fsl_ifc_nand_ctrl { + struct nand_hw_control controller; + struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; + + void __iomem *addr; /* Address of assigned IFC buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes;/* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int eccread; /* Non zero for a full-page ECC read */ + unsigned int counter; /* counter for the initializations */ + unsigned int max_bitflips; /* Saved during READ0 cmd */ + }; + + static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; + + /* + * Generic flash bbt descriptors + */ + static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; + static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + + static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern, + }; + + static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern, + }; + + static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) + { + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 8; + oobregion->length = chip->ecc.total; + + return 0; + } + + static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) + { + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section > 1) + return -ERANGE; + + if (mtd->writesize == 512 && + !(chip->options & NAND_BUSWIDTH_16)) { + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 6; + oobregion->length = 2; + } + + return 0; + } + + if (!section) { + oobregion->offset = 2; + oobregion->length = 6; + } else { + oobregion->offset = chip->ecc.total + 8; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; + } + + static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = { + .ecc = fsl_ifc_ooblayout_ecc, + .free = fsl_ifc_ooblayout_free, + }; + + /* + * Set up the IFC hardware block and page address fields, and the ifc nand + * structure addr field to point to the correct IFC buffer in memory + */ + static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) + { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + int buf_num; + + ifc_nand_ctrl->page = page_addr; + /* Program ROW0/COL0 */ + ifc_out32(page_addr, &ifc->ifc_nand.row0); + ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); + + buf_num = page_addr & priv->bufnum_mask; + + ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); + ifc_nand_ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ifc_nand_ctrl->index += mtd->writesize; + } + + /* returns nonzero if entire page is blank */ + static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, - u32 *eccstat, unsigned int bufnum) ++ u32 eccstat, unsigned int bufnum) + { - u32 reg = eccstat[bufnum / 4]; - int errors; - - errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; - - return errors; ++ return (eccstat >> ((3 - bufnum % 4) * 8)) & 15; + } + + /* + * execute IFC NAND command and wait for it to complete + */ + static void fsl_ifc_run_command(struct mtd_info *mtd) + { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; - u32 eccstat[4]; ++ u32 eccstat; + int i; + + /* set the chip select for NAND Transaction */ + ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT, + &ifc->ifc_nand.nand_csel); + + dev_vdbg(priv->dev, + "%s: fir0=%08x fcr0=%08x\n", + __func__, + ifc_in32(&ifc->ifc_nand.nand_fir0), + ifc_in32(&ifc->ifc_nand.nand_fcr0)); + + ctrl->nand_stat = 0; + + /* start read/write seq */ + ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + msecs_to_jiffies(IFC_TIMEOUT_MSECS)); + + /* ctrl->nand_stat will be updated from IRQ context */ + if (!ctrl->nand_stat) + dev_err(priv->dev, "Controller is not responding\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) + dev_err(priv->dev, "NAND Flash Timeout Error\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) + dev_err(priv->dev, "NAND Flash Write Protect Error\n"); + + nctrl->max_bitflips = 0; + + if (nctrl->eccread) { + int errors; + int bufnum = nctrl->page & priv->bufnum_mask; - int sector = bufnum * chip->ecc.steps; - int sector_end = sector + chip->ecc.steps - 1; ++ int sector_start = bufnum * chip->ecc.steps; ++ int sector_end = sector_start + chip->ecc.steps - 1; + __be32 *eccstat_regs; + - if (ctrl->version >= FSL_IFC_VERSION_2_0_0) - eccstat_regs = ifc->ifc_nand.v2_nand_eccstat; - else - eccstat_regs = ifc->ifc_nand.v1_nand_eccstat; ++ eccstat_regs = ifc->ifc_nand.nand_eccstat; ++ eccstat = ifc_in32(&eccstat_regs[sector_start / 4]); + - for (i = sector / 4; i <= sector_end / 4; i++) - eccstat[i] = ifc_in32(&eccstat_regs[i]); ++ for (i = sector_start; i <= sector_end; i++) { ++ if (i != sector_start && !(i % 4)) ++ eccstat = ifc_in32(&eccstat_regs[i / 4]); + - for (i = sector; i <= sector_end; i++) { + errors = check_read_ecc(mtd, ctrl, eccstat, i); + + if (errors == 15) { + /* + * Uncorrectable error. + * We'll check for blank pages later. + * + * We disable ECCER reporting due to... + * erratum IFC-A002770 -- so report it now if we + * see an uncorrectable error in ECCSTAT. + */ + ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER; + continue; + } + + mtd->ecc_stats.corrected += errors; + nctrl->max_bitflips = max_t(unsigned int, + nctrl->max_bitflips, + errors); + } + + nctrl->eccread = 0; + } + } + + static void fsl_ifc_do_read(struct nand_chip *chip, + int oob, + struct mtd_info *mtd) + { + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + + /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ + if (mtd->writesize > 512) { + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); + + ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + } else { + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); + + if (oob) + ifc_out32(NAND_CMD_READOOB << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + else + ifc_out32(NAND_CMD_READ0 << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + } + } + + /* cmdfunc send commands to the IFC NAND Machine */ + static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + + /* clear the read buffer */ + ifc_nand_ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ifc_nand_ctrl->index = 0; + + switch (command) { + /* READ0 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ0: + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, page_addr, 0); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ifc_nand_ctrl->index += column; + + if (chip->ecc.mode == NAND_ECC_HW) + ifc_nand_ctrl->eccread = 1; + + fsl_ifc_do_read(chip, 0, mtd); + fsl_ifc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, column, page_addr, 1); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_ifc_do_read(chip, 1, mtd); + fsl_ifc_run_command(mtd); + + return; + + case NAND_CMD_READID: + case NAND_CMD_PARAM: { + int timing = IFC_FIR_OP_RB; + if (command == NAND_CMD_PARAM) + timing = IFC_FIR_OP_RBCD; + + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (timing << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(column, &ifc->ifc_nand.row3); + + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + ifc_out32(256, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = 256; + + set_addr(mtd, 0, 0, 0); + fsl_ifc_run_command(mtd); + return; + } + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + + ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = 0; + fsl_ifc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + u32 nand_fcr0; + ifc_nand_ctrl->column = column; + ifc_nand_ctrl->oob = 0; + + if (mtd->writesize > 512) { + nand_fcr0 = + (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); + + ifc_out32( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32( + (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), + &ifc->ifc_nand.nand_fir1); + } else { + nand_fcr0 = ((NAND_CMD_PAGEPROG << + IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_SEQIN << + IFC_NAND_FCR0_CMD2_SHIFT) | + (NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD3_SHIFT)); + + ifc_out32( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32( + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), + &ifc->ifc_nand.nand_fir1); + + if (column >= mtd->writesize) + nand_fcr0 |= + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; + else + nand_fcr0 |= + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; + } + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + ifc_nand_ctrl->oob = 1; + } + ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0); + set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + if (ifc_nand_ctrl->oob) { + ifc_out32(ifc_nand_ctrl->index - + ifc_nand_ctrl->column, + &ifc->ifc_nand.nand_fbcr); + } else { + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + } + + fsl_ifc_run_command(mtd); + return; + } + + case NAND_CMD_STATUS: { + void __iomem *addr; + + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + addr = ifc_nand_ctrl->addr; + if (chip->options & NAND_BUSWIDTH_16) + ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr); + else + ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr); + return; + } + + case NAND_CMD_RESET: + ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + fsl_ifc_run_command(mtd); + return; + + default: + dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", + __func__, command); + } + } + + static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) + { + /* The hardware does not seem to support multiple + * chips per bank. + */ + } + + /* + * Write buf to the IFC NAND Controller Data Buffer + */ + static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) + { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %u available)\n", + __func__, len, bufsize - ifc_nand_ctrl->index); + len = bufsize - ifc_nand_ctrl->index; + } + + memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); + ifc_nand_ctrl->index += len; + } + + /* + * Read a byte from either the IFC hardware buffer + * read function for 8-bit buswidth + */ + static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) + { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + unsigned int offset; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + offset = ifc_nand_ctrl->index++; + return ifc_in8(ifc_nand_ctrl->addr + offset); + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; + } + + /* + * Read two bytes from the IFC hardware buffer + * read function for 16-bit buswith + */ + static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) + { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + uint16_t data; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); + ifc_nand_ctrl->index += 2; + return (uint8_t) data; + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; + } + + /* + * Read from the IFC Controller Data Buffer + */ + static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) + { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + int avail; + + if (len < 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + avail = min((unsigned int)len, + ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); + memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); + ifc_nand_ctrl->index += avail; + + if (len > avail) + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %d available)\n", + __func__, len, avail); + } + + /* + * This function is called after Program and Erase Operations to + * check for success or failure. + */ + static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) + { + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + u32 nand_fsr; ++ int status; + + /* Use READ_STATUS command, but wait for the device to be ready */ + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); - ++ status = nand_fsr >> 24; + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ - return nand_fsr | NAND_STATUS_WP; ++ return status | NAND_STATUS_WP; + } + + /* + * The controller does not check for bitflips in erased pages, + * therefore software must check instead. + */ + static int check_erased_page(struct nand_chip *chip, u8 *buf) + { + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *ecc = chip->oob_poi; + const int ecc_size = chip->ecc.bytes; + const int pkt_size = chip->ecc.size; + int i, res, bitflips = 0; + struct mtd_oob_region oobregion = { }; + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + ecc += oobregion.offset; + + for (i = 0; i < chip->ecc.steps; ++i) { + res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, + NULL, 0, + chip->ecc.strength); + if (res < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += res; + + bitflips = max(res, bitflips); + buf += pkt_size; + ecc += ecc_size; + } + + return bitflips; + } + + static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) + { + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) { + if (!oob_required) + fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return check_erased_page(chip, buf); + } + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + mtd->ecc_stats.failed++; + + return nctrl->max_bitflips; + } + + /* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ + static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) + { + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); + } + + static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) + { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + + dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, + chip->numchips); + dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, + chip->chipsize); + dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, + chip->pagemask); + dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, + chip->chip_delay); + dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, + chip->badblockpos); + dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, + chip->chip_shift); + dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, + chip->page_shift); + dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, + chip->phys_erase_shift); + dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, + chip->ecc.mode); + dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, + chip->ecc.steps); + dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, + chip->ecc.bytes); + dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, + chip->ecc.total); + dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__, + mtd->ooblayout); + dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); + dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); + dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, + mtd->erasesize); + dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, + mtd->writesize); + dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, + mtd->oobsize); + + return 0; + } + + static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) + { + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; + struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; + uint32_t csor = 0, csor_8k = 0, csor_ext = 0; + uint32_t cs = priv->bank; + + /* Save CSOR and CSOR_ext */ + csor = ifc_in32(&ifc_global->csor_cs[cs].csor); + csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext); + + /* chage PageSize 8K and SpareSize 1K*/ + csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; + ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor); + ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext); + + /* READID */ + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), + &ifc_runtime->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc_runtime->ifc_nand.nand_fcr0); + ifc_out32(0x0, &ifc_runtime->ifc_nand.row3); + + ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr); + + /* Program ROW0/COL0 */ + ifc_out32(0x0, &ifc_runtime->ifc_nand.row0); + ifc_out32(0x0, &ifc_runtime->ifc_nand.col0); + + /* set the chip select for NAND Transaction */ + ifc_out32(cs << IFC_NAND_CSEL_SHIFT, + &ifc_runtime->ifc_nand.nand_csel); + + /* start read seq */ + ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, + &ifc_runtime->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + msecs_to_jiffies(IFC_TIMEOUT_MSECS)); + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + pr_err("fsl-ifc: Failed to Initialise SRAM\n"); + + /* Restore CSOR and CSOR_ext */ + ifc_out32(csor, &ifc_global->csor_cs[cs].csor); + ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext); + } + + static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) + { + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; + struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; + struct nand_chip *chip = &priv->chip; + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + u32 csor; + + /* Fill in fsl_ifc_mtd structure */ + mtd->dev.parent = priv->dev; + nand_set_flash_node(chip, priv->dev->of_node); + + /* fill in nand_chip structure */ + /* set up function call table */ + if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)) + & CSPR_PORT_SIZE_16) + chip->read_byte = fsl_ifc_read_byte16; + else + chip->read_byte = fsl_ifc_read_byte; + + chip->write_buf = fsl_ifc_write_buf; + chip->read_buf = fsl_ifc_read_buf; + chip->select_chip = fsl_ifc_select_chip; + chip->cmdfunc = fsl_ifc_cmdfunc; + chip->waitfunc = fsl_ifc_wait; + chip->set_features = nand_get_set_features_notsupp; + chip->get_features = nand_get_set_features_notsupp; + + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + + ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr); + + /* set up nand options */ + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->options = NAND_NO_SUBPAGE_WRITE; + + if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr) + & CSPR_PORT_SIZE_16) { + chip->read_byte = fsl_ifc_read_byte16; + chip->options |= NAND_BUSWIDTH_16; + } else { + chip->read_byte = fsl_ifc_read_byte; + } + + chip->controller = &ifc_nand_ctrl->controller; + nand_set_controller_data(chip, priv); + + chip->ecc.read_page = fsl_ifc_read_page; + chip->ecc.write_page = fsl_ifc_write_page; + + csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); + + switch (csor & CSOR_NAND_PGS_MASK) { + case CSOR_NAND_PGS_512: + if (!(chip->options & NAND_BUSWIDTH_16)) { + /* Avoid conflict with bad block marker */ + bbt_main_descr.offs = 0; + bbt_mirror_descr.offs = 0; + } + + priv->bufnum_mask = 15; + break; + + case CSOR_NAND_PGS_2K: + priv->bufnum_mask = 3; + break; + + case CSOR_NAND_PGS_4K: + priv->bufnum_mask = 1; + break; + + case CSOR_NAND_PGS_8K: + priv->bufnum_mask = 0; + break; + + default: + dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); + return -ENODEV; + } + + /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ + if (csor & CSOR_NAND_ECC_DEC_EN) { + chip->ecc.mode = NAND_ECC_HW; + mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops); + + /* Hardware generates ECC per 512 Bytes */ + chip->ecc.size = 512; + if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { + chip->ecc.bytes = 8; + chip->ecc.strength = 4; + } else { + chip->ecc.bytes = 16; + chip->ecc.strength = 8; + } + } else { + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + } + + if (ctrl->version >= FSL_IFC_VERSION_1_1_0) + fsl_ifc_sram_init(priv); + + /* + * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older + * versions which had 8KB. Hence bufnum mask needs to be updated. + */ + if (ctrl->version >= FSL_IFC_VERSION_2_0_0) + priv->bufnum_mask = (priv->bufnum_mask * 2) + 1; + + return 0; + } + + static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) + { + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + + nand_release(mtd); + + kfree(mtd->name); + + if (priv->vbase) + iounmap(priv->vbase); + + ifc_nand_ctrl->chips[priv->bank] = NULL; + + return 0; + } + + static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank, + phys_addr_t addr) + { + u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr); + + if (!(cspr & CSPR_V)) + return 0; + if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) + return 0; + + return (cspr & CSPR_BA) == convert_ifc_address(addr); + } + + static DEFINE_MUTEX(fsl_ifc_nand_mutex); + + static int fsl_ifc_nand_probe(struct platform_device *dev) + { + struct fsl_ifc_runtime __iomem *ifc; + struct fsl_ifc_mtd *priv; + struct resource res; + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; + int ret; + int bank; + struct device_node *node = dev->dev.of_node; + struct mtd_info *mtd; + + if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs) + return -ENODEV; + ifc = fsl_ifc_ctrl_dev->rregs; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(&dev->dev, "%s: failed to get resource\n", __func__); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) { + if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start)) + break; + } + + if (bank >= fsl_ifc_ctrl_dev->banks) { + dev_err(&dev->dev, "%s: address did not match any chip selects\n", + __func__); + return -ENODEV; + } + + priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_lock(&fsl_ifc_nand_mutex); + if (!fsl_ifc_ctrl_dev->nand) { + ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); + if (!ifc_nand_ctrl) { + mutex_unlock(&fsl_ifc_nand_mutex); + return -ENOMEM; + } + + ifc_nand_ctrl->read_bytes = 0; + ifc_nand_ctrl->index = 0; + ifc_nand_ctrl->addr = NULL; + fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; + + nand_hw_control_init(&ifc_nand_ctrl->controller); + } else { + ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; + } + mutex_unlock(&fsl_ifc_nand_mutex); + + ifc_nand_ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = fsl_ifc_ctrl_dev; + priv->dev = &dev->dev; + + priv->vbase = ioremap(res.start, resource_size(&res)); + if (!priv->vbase) { + dev_err(priv->dev, "%s: failed to map chip region\n", __func__); + ret = -ENOMEM; + goto err; + } + + dev_set_drvdata(priv->dev, priv); + + ifc_out32(IFC_NAND_EVTER_EN_OPC_EN | + IFC_NAND_EVTER_EN_FTOER_EN | + IFC_NAND_EVTER_EN_WPER_EN, + &ifc->ifc_nand.nand_evter_en); + + /* enable NAND Machine Interrupts */ + ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN | + IFC_NAND_EVTER_INTR_FTOERIR_EN | + IFC_NAND_EVTER_INTR_WPERIR_EN, + &ifc->ifc_nand.nand_evter_intr_en); + + mtd = nand_to_mtd(&priv->chip); + mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); + if (!mtd->name) { + ret = -ENOMEM; + goto err; + } + + ret = fsl_ifc_chip_init(priv); + if (ret) + goto err; + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + goto err; + + ret = fsl_ifc_chip_init_tail(mtd); + if (ret) + goto err; + + ret = nand_scan_tail(mtd); + if (ret) + goto err; + + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); + + dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); + return 0; + + err: + fsl_ifc_chip_remove(priv); + return ret; + } + + static int fsl_ifc_nand_remove(struct platform_device *dev) + { + struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); + + fsl_ifc_chip_remove(priv); + + mutex_lock(&fsl_ifc_nand_mutex); + ifc_nand_ctrl->counter--; + if (!ifc_nand_ctrl->counter) { + fsl_ifc_ctrl_dev->nand = NULL; + kfree(ifc_nand_ctrl); + } + mutex_unlock(&fsl_ifc_nand_mutex); + + return 0; + } + + static const struct of_device_id fsl_ifc_nand_match[] = { + { + .compatible = "fsl,ifc-nand", + }, + {} + }; + MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match); + + static struct platform_driver fsl_ifc_nand_driver = { + .driver = { + .name = "fsl,ifc-nand", + .of_match_table = fsl_ifc_nand_match, + }, + .probe = fsl_ifc_nand_probe, + .remove = fsl_ifc_nand_remove, + }; + + module_platform_driver(fsl_ifc_nand_driver); + + MODULE_LICENSE("GPL"); + MODULE_AUTHOR("Freescale"); + MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");