93c233ab2db6
[openwrt/staging/blogic.git] /
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19
20 /* BTF (BPF Type Format) is the meta data format which describes
21 * the data types of BPF program/map. Hence, it basically focus
22 * on the C programming language which the modern BPF is primary
23 * using.
24 *
25 * ELF Section:
26 * ~~~~~~~~~~~
27 * The BTF data is stored under the ".BTF" ELF section
28 *
29 * struct btf_type:
30 * ~~~~~~~~~~~~~~~
31 * Each 'struct btf_type' object describes a C data type.
32 * Depending on the type it is describing, a 'struct btf_type'
33 * object may be followed by more data. F.e.
34 * To describe an array, 'struct btf_type' is followed by
35 * 'struct btf_array'.
36 *
37 * 'struct btf_type' and any extra data following it are
38 * 4 bytes aligned.
39 *
40 * Type section:
41 * ~~~~~~~~~~~~~
42 * The BTF type section contains a list of 'struct btf_type' objects.
43 * Each one describes a C type. Recall from the above section
44 * that a 'struct btf_type' object could be immediately followed by extra
45 * data in order to desribe some particular C types.
46 *
47 * type_id:
48 * ~~~~~~~
49 * Each btf_type object is identified by a type_id. The type_id
50 * is implicitly implied by the location of the btf_type object in
51 * the BTF type section. The first one has type_id 1. The second
52 * one has type_id 2...etc. Hence, an earlier btf_type has
53 * a smaller type_id.
54 *
55 * A btf_type object may refer to another btf_type object by using
56 * type_id (i.e. the "type" in the "struct btf_type").
57 *
58 * NOTE that we cannot assume any reference-order.
59 * A btf_type object can refer to an earlier btf_type object
60 * but it can also refer to a later btf_type object.
61 *
62 * For example, to describe "const void *". A btf_type
63 * object describing "const" may refer to another btf_type
64 * object describing "void *". This type-reference is done
65 * by specifying type_id:
66 *
67 * [1] CONST (anon) type_id=2
68 * [2] PTR (anon) type_id=0
69 *
70 * The above is the btf_verifier debug log:
71 * - Each line started with "[?]" is a btf_type object
72 * - [?] is the type_id of the btf_type object.
73 * - CONST/PTR is the BTF_KIND_XXX
74 * - "(anon)" is the name of the type. It just
75 * happens that CONST and PTR has no name.
76 * - type_id=XXX is the 'u32 type' in btf_type
77 *
78 * NOTE: "void" has type_id 0
79 *
80 * String section:
81 * ~~~~~~~~~~~~~~
82 * The BTF string section contains the names used by the type section.
83 * Each string is referred by an "offset" from the beginning of the
84 * string section.
85 *
86 * Each string is '\0' terminated.
87 *
88 * The first character in the string section must be '\0'
89 * which is used to mean 'anonymous'. Some btf_type may not
90 * have a name.
91 */
92
93 /* BTF verification:
94 *
95 * To verify BTF data, two passes are needed.
96 *
97 * Pass #1
98 * ~~~~~~~
99 * The first pass is to collect all btf_type objects to
100 * an array: "btf->types".
101 *
102 * Depending on the C type that a btf_type is describing,
103 * a btf_type may be followed by extra data. We don't know
104 * how many btf_type is there, and more importantly we don't
105 * know where each btf_type is located in the type section.
106 *
107 * Without knowing the location of each type_id, most verifications
108 * cannot be done. e.g. an earlier btf_type may refer to a later
109 * btf_type (recall the "const void *" above), so we cannot
110 * check this type-reference in the first pass.
111 *
112 * In the first pass, it still does some verifications (e.g.
113 * checking the name is a valid offset to the string section).
114 *
115 * Pass #2
116 * ~~~~~~~
117 * The main focus is to resolve a btf_type that is referring
118 * to another type.
119 *
120 * We have to ensure the referring type:
121 * 1) does exist in the BTF (i.e. in btf->types[])
122 * 2) does not cause a loop:
123 * struct A {
124 * struct B b;
125 * };
126 *
127 * struct B {
128 * struct A a;
129 * };
130 *
131 * btf_type_needs_resolve() decides if a btf_type needs
132 * to be resolved.
133 *
134 * The needs_resolve type implements the "resolve()" ops which
135 * essentially does a DFS and detects backedge.
136 *
137 * During resolve (or DFS), different C types have different
138 * "RESOLVED" conditions.
139 *
140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141 * members because a member is always referring to another
142 * type. A struct's member can be treated as "RESOLVED" if
143 * it is referring to a BTF_KIND_PTR. Otherwise, the
144 * following valid C struct would be rejected:
145 *
146 * struct A {
147 * int m;
148 * struct A *a;
149 * };
150 *
151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
153 * detect a pointer loop, e.g.:
154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155 * ^ |
156 * +-----------------------------------------+
157 *
158 */
159
160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166
167 #define BTF_INFO_MASK 0x0f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171
172 /* 16MB for 64k structs and each has 16 members and
173 * a few MB spaces for the string section.
174 * The hard limit is S32_MAX.
175 */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177
178 #define for_each_member(i, struct_type, member) \
179 for (i = 0, member = btf_type_member(struct_type); \
180 i < btf_type_vlen(struct_type); \
181 i++, member++)
182
183 #define for_each_member_from(i, from, struct_type, member) \
184 for (i = from, member = btf_type_member(struct_type) + from; \
185 i < btf_type_vlen(struct_type); \
186 i++, member++)
187
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
190
191 struct btf {
192 void *data;
193 struct btf_type **types;
194 u32 *resolved_ids;
195 u32 *resolved_sizes;
196 const char *strings;
197 void *nohdr_data;
198 struct btf_header hdr;
199 u32 nr_types;
200 u32 types_size;
201 u32 data_size;
202 refcount_t refcnt;
203 u32 id;
204 struct rcu_head rcu;
205 };
206
207 enum verifier_phase {
208 CHECK_META,
209 CHECK_TYPE,
210 };
211
212 struct resolve_vertex {
213 const struct btf_type *t;
214 u32 type_id;
215 u16 next_member;
216 };
217
218 enum visit_state {
219 NOT_VISITED,
220 VISITED,
221 RESOLVED,
222 };
223
224 enum resolve_mode {
225 RESOLVE_TBD, /* To Be Determined */
226 RESOLVE_PTR, /* Resolving for Pointer */
227 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
228 * or array
229 */
230 };
231
232 #define MAX_RESOLVE_DEPTH 32
233
234 struct btf_sec_info {
235 u32 off;
236 u32 len;
237 };
238
239 struct btf_verifier_env {
240 struct btf *btf;
241 u8 *visit_states;
242 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 struct bpf_verifier_log log;
244 u32 log_type_id;
245 u32 top_stack;
246 enum verifier_phase phase;
247 enum resolve_mode resolve_mode;
248 };
249
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 [BTF_KIND_UNKN] = "UNKNOWN",
252 [BTF_KIND_INT] = "INT",
253 [BTF_KIND_PTR] = "PTR",
254 [BTF_KIND_ARRAY] = "ARRAY",
255 [BTF_KIND_STRUCT] = "STRUCT",
256 [BTF_KIND_UNION] = "UNION",
257 [BTF_KIND_ENUM] = "ENUM",
258 [BTF_KIND_FWD] = "FWD",
259 [BTF_KIND_TYPEDEF] = "TYPEDEF",
260 [BTF_KIND_VOLATILE] = "VOLATILE",
261 [BTF_KIND_CONST] = "CONST",
262 [BTF_KIND_RESTRICT] = "RESTRICT",
263 };
264
265 struct btf_kind_operations {
266 s32 (*check_meta)(struct btf_verifier_env *env,
267 const struct btf_type *t,
268 u32 meta_left);
269 int (*resolve)(struct btf_verifier_env *env,
270 const struct resolve_vertex *v);
271 int (*check_member)(struct btf_verifier_env *env,
272 const struct btf_type *struct_type,
273 const struct btf_member *member,
274 const struct btf_type *member_type);
275 void (*log_details)(struct btf_verifier_env *env,
276 const struct btf_type *t);
277 void (*seq_show)(const struct btf *btf, const struct btf_type *t,
278 u32 type_id, void *data, u8 bits_offsets,
279 struct seq_file *m);
280 };
281
282 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
283 static struct btf_type btf_void;
284
285 static bool btf_type_is_modifier(const struct btf_type *t)
286 {
287 /* Some of them is not strictly a C modifier
288 * but they are grouped into the same bucket
289 * for BTF concern:
290 * A type (t) that refers to another
291 * type through t->type AND its size cannot
292 * be determined without following the t->type.
293 *
294 * ptr does not fall into this bucket
295 * because its size is always sizeof(void *).
296 */
297 switch (BTF_INFO_KIND(t->info)) {
298 case BTF_KIND_TYPEDEF:
299 case BTF_KIND_VOLATILE:
300 case BTF_KIND_CONST:
301 case BTF_KIND_RESTRICT:
302 return true;
303 }
304
305 return false;
306 }
307
308 static bool btf_type_is_void(const struct btf_type *t)
309 {
310 /* void => no type and size info.
311 * Hence, FWD is also treated as void.
312 */
313 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
314 }
315
316 static bool btf_type_is_void_or_null(const struct btf_type *t)
317 {
318 return !t || btf_type_is_void(t);
319 }
320
321 /* union is only a special case of struct:
322 * all its offsetof(member) == 0
323 */
324 static bool btf_type_is_struct(const struct btf_type *t)
325 {
326 u8 kind = BTF_INFO_KIND(t->info);
327
328 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
329 }
330
331 static bool btf_type_is_array(const struct btf_type *t)
332 {
333 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
334 }
335
336 static bool btf_type_is_ptr(const struct btf_type *t)
337 {
338 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
339 }
340
341 static bool btf_type_is_int(const struct btf_type *t)
342 {
343 return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
344 }
345
346 /* What types need to be resolved?
347 *
348 * btf_type_is_modifier() is an obvious one.
349 *
350 * btf_type_is_struct() because its member refers to
351 * another type (through member->type).
352
353 * btf_type_is_array() because its element (array->type)
354 * refers to another type. Array can be thought of a
355 * special case of struct while array just has the same
356 * member-type repeated by array->nelems of times.
357 */
358 static bool btf_type_needs_resolve(const struct btf_type *t)
359 {
360 return btf_type_is_modifier(t) ||
361 btf_type_is_ptr(t) ||
362 btf_type_is_struct(t) ||
363 btf_type_is_array(t);
364 }
365
366 /* t->size can be used */
367 static bool btf_type_has_size(const struct btf_type *t)
368 {
369 switch (BTF_INFO_KIND(t->info)) {
370 case BTF_KIND_INT:
371 case BTF_KIND_STRUCT:
372 case BTF_KIND_UNION:
373 case BTF_KIND_ENUM:
374 return true;
375 }
376
377 return false;
378 }
379
380 static const char *btf_int_encoding_str(u8 encoding)
381 {
382 if (encoding == 0)
383 return "(none)";
384 else if (encoding == BTF_INT_SIGNED)
385 return "SIGNED";
386 else if (encoding == BTF_INT_CHAR)
387 return "CHAR";
388 else if (encoding == BTF_INT_BOOL)
389 return "BOOL";
390 else
391 return "UNKN";
392 }
393
394 static u16 btf_type_vlen(const struct btf_type *t)
395 {
396 return BTF_INFO_VLEN(t->info);
397 }
398
399 static u32 btf_type_int(const struct btf_type *t)
400 {
401 return *(u32 *)(t + 1);
402 }
403
404 static const struct btf_array *btf_type_array(const struct btf_type *t)
405 {
406 return (const struct btf_array *)(t + 1);
407 }
408
409 static const struct btf_member *btf_type_member(const struct btf_type *t)
410 {
411 return (const struct btf_member *)(t + 1);
412 }
413
414 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
415 {
416 return (const struct btf_enum *)(t + 1);
417 }
418
419 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
420 {
421 return kind_ops[BTF_INFO_KIND(t->info)];
422 }
423
424 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
425 {
426 return BTF_STR_OFFSET_VALID(offset) &&
427 offset < btf->hdr.str_len;
428 }
429
430 /* Only C-style identifier is permitted. This can be relaxed if
431 * necessary.
432 */
433 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
434 {
435 /* offset must be valid */
436 const char *src = &btf->strings[offset];
437 const char *src_limit;
438
439 if (!isalpha(*src) && *src != '_')
440 return false;
441
442 /* set a limit on identifier length */
443 src_limit = src + KSYM_NAME_LEN;
444 src++;
445 while (*src && src < src_limit) {
446 if (!isalnum(*src) && *src != '_')
447 return false;
448 src++;
449 }
450
451 return !*src;
452 }
453
454 static const char *btf_name_by_offset(const struct btf *btf, u32 offset)
455 {
456 if (!offset)
457 return "(anon)";
458 else if (offset < btf->hdr.str_len)
459 return &btf->strings[offset];
460 else
461 return "(invalid-name-offset)";
462 }
463
464 static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
465 {
466 if (type_id > btf->nr_types)
467 return NULL;
468
469 return btf->types[type_id];
470 }
471
472 /*
473 * Regular int is not a bit field and it must be either
474 * u8/u16/u32/u64.
475 */
476 static bool btf_type_int_is_regular(const struct btf_type *t)
477 {
478 u8 nr_bits, nr_bytes;
479 u32 int_data;
480
481 int_data = btf_type_int(t);
482 nr_bits = BTF_INT_BITS(int_data);
483 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
484 if (BITS_PER_BYTE_MASKED(nr_bits) ||
485 BTF_INT_OFFSET(int_data) ||
486 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
487 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
488 return false;
489 }
490
491 return true;
492 }
493
494 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
495 const char *fmt, ...)
496 {
497 va_list args;
498
499 va_start(args, fmt);
500 bpf_verifier_vlog(log, fmt, args);
501 va_end(args);
502 }
503
504 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
505 const char *fmt, ...)
506 {
507 struct bpf_verifier_log *log = &env->log;
508 va_list args;
509
510 if (!bpf_verifier_log_needed(log))
511 return;
512
513 va_start(args, fmt);
514 bpf_verifier_vlog(log, fmt, args);
515 va_end(args);
516 }
517
518 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
519 const struct btf_type *t,
520 bool log_details,
521 const char *fmt, ...)
522 {
523 struct bpf_verifier_log *log = &env->log;
524 u8 kind = BTF_INFO_KIND(t->info);
525 struct btf *btf = env->btf;
526 va_list args;
527
528 if (!bpf_verifier_log_needed(log))
529 return;
530
531 __btf_verifier_log(log, "[%u] %s %s%s",
532 env->log_type_id,
533 btf_kind_str[kind],
534 btf_name_by_offset(btf, t->name_off),
535 log_details ? " " : "");
536
537 if (log_details)
538 btf_type_ops(t)->log_details(env, t);
539
540 if (fmt && *fmt) {
541 __btf_verifier_log(log, " ");
542 va_start(args, fmt);
543 bpf_verifier_vlog(log, fmt, args);
544 va_end(args);
545 }
546
547 __btf_verifier_log(log, "\n");
548 }
549
550 #define btf_verifier_log_type(env, t, ...) \
551 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
552 #define btf_verifier_log_basic(env, t, ...) \
553 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
554
555 __printf(4, 5)
556 static void btf_verifier_log_member(struct btf_verifier_env *env,
557 const struct btf_type *struct_type,
558 const struct btf_member *member,
559 const char *fmt, ...)
560 {
561 struct bpf_verifier_log *log = &env->log;
562 struct btf *btf = env->btf;
563 va_list args;
564
565 if (!bpf_verifier_log_needed(log))
566 return;
567
568 /* The CHECK_META phase already did a btf dump.
569 *
570 * If member is logged again, it must hit an error in
571 * parsing this member. It is useful to print out which
572 * struct this member belongs to.
573 */
574 if (env->phase != CHECK_META)
575 btf_verifier_log_type(env, struct_type, NULL);
576
577 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
578 btf_name_by_offset(btf, member->name_off),
579 member->type, member->offset);
580
581 if (fmt && *fmt) {
582 __btf_verifier_log(log, " ");
583 va_start(args, fmt);
584 bpf_verifier_vlog(log, fmt, args);
585 va_end(args);
586 }
587
588 __btf_verifier_log(log, "\n");
589 }
590
591 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
592 u32 btf_data_size)
593 {
594 struct bpf_verifier_log *log = &env->log;
595 const struct btf *btf = env->btf;
596 const struct btf_header *hdr;
597
598 if (!bpf_verifier_log_needed(log))
599 return;
600
601 hdr = &btf->hdr;
602 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
603 __btf_verifier_log(log, "version: %u\n", hdr->version);
604 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
605 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
606 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
607 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
608 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
609 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
610 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
611 }
612
613 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
614 {
615 struct btf *btf = env->btf;
616
617 /* < 2 because +1 for btf_void which is always in btf->types[0].
618 * btf_void is not accounted in btf->nr_types because btf_void
619 * does not come from the BTF file.
620 */
621 if (btf->types_size - btf->nr_types < 2) {
622 /* Expand 'types' array */
623
624 struct btf_type **new_types;
625 u32 expand_by, new_size;
626
627 if (btf->types_size == BTF_MAX_TYPE) {
628 btf_verifier_log(env, "Exceeded max num of types");
629 return -E2BIG;
630 }
631
632 expand_by = max_t(u32, btf->types_size >> 2, 16);
633 new_size = min_t(u32, BTF_MAX_TYPE,
634 btf->types_size + expand_by);
635
636 new_types = kvcalloc(new_size, sizeof(*new_types),
637 GFP_KERNEL | __GFP_NOWARN);
638 if (!new_types)
639 return -ENOMEM;
640
641 if (btf->nr_types == 0)
642 new_types[0] = &btf_void;
643 else
644 memcpy(new_types, btf->types,
645 sizeof(*btf->types) * (btf->nr_types + 1));
646
647 kvfree(btf->types);
648 btf->types = new_types;
649 btf->types_size = new_size;
650 }
651
652 btf->types[++(btf->nr_types)] = t;
653
654 return 0;
655 }
656
657 static int btf_alloc_id(struct btf *btf)
658 {
659 int id;
660
661 idr_preload(GFP_KERNEL);
662 spin_lock_bh(&btf_idr_lock);
663 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
664 if (id > 0)
665 btf->id = id;
666 spin_unlock_bh(&btf_idr_lock);
667 idr_preload_end();
668
669 if (WARN_ON_ONCE(!id))
670 return -ENOSPC;
671
672 return id > 0 ? 0 : id;
673 }
674
675 static void btf_free_id(struct btf *btf)
676 {
677 unsigned long flags;
678
679 /*
680 * In map-in-map, calling map_delete_elem() on outer
681 * map will call bpf_map_put on the inner map.
682 * It will then eventually call btf_free_id()
683 * on the inner map. Some of the map_delete_elem()
684 * implementation may have irq disabled, so
685 * we need to use the _irqsave() version instead
686 * of the _bh() version.
687 */
688 spin_lock_irqsave(&btf_idr_lock, flags);
689 idr_remove(&btf_idr, btf->id);
690 spin_unlock_irqrestore(&btf_idr_lock, flags);
691 }
692
693 static void btf_free(struct btf *btf)
694 {
695 kvfree(btf->types);
696 kvfree(btf->resolved_sizes);
697 kvfree(btf->resolved_ids);
698 kvfree(btf->data);
699 kfree(btf);
700 }
701
702 static void btf_free_rcu(struct rcu_head *rcu)
703 {
704 struct btf *btf = container_of(rcu, struct btf, rcu);
705
706 btf_free(btf);
707 }
708
709 void btf_put(struct btf *btf)
710 {
711 if (btf && refcount_dec_and_test(&btf->refcnt)) {
712 btf_free_id(btf);
713 call_rcu(&btf->rcu, btf_free_rcu);
714 }
715 }
716
717 static int env_resolve_init(struct btf_verifier_env *env)
718 {
719 struct btf *btf = env->btf;
720 u32 nr_types = btf->nr_types;
721 u32 *resolved_sizes = NULL;
722 u32 *resolved_ids = NULL;
723 u8 *visit_states = NULL;
724
725 /* +1 for btf_void */
726 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
727 GFP_KERNEL | __GFP_NOWARN);
728 if (!resolved_sizes)
729 goto nomem;
730
731 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
732 GFP_KERNEL | __GFP_NOWARN);
733 if (!resolved_ids)
734 goto nomem;
735
736 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
737 GFP_KERNEL | __GFP_NOWARN);
738 if (!visit_states)
739 goto nomem;
740
741 btf->resolved_sizes = resolved_sizes;
742 btf->resolved_ids = resolved_ids;
743 env->visit_states = visit_states;
744
745 return 0;
746
747 nomem:
748 kvfree(resolved_sizes);
749 kvfree(resolved_ids);
750 kvfree(visit_states);
751 return -ENOMEM;
752 }
753
754 static void btf_verifier_env_free(struct btf_verifier_env *env)
755 {
756 kvfree(env->visit_states);
757 kfree(env);
758 }
759
760 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
761 const struct btf_type *next_type)
762 {
763 switch (env->resolve_mode) {
764 case RESOLVE_TBD:
765 /* int, enum or void is a sink */
766 return !btf_type_needs_resolve(next_type);
767 case RESOLVE_PTR:
768 /* int, enum, void, struct or array is a sink for ptr */
769 return !btf_type_is_modifier(next_type) &&
770 !btf_type_is_ptr(next_type);
771 case RESOLVE_STRUCT_OR_ARRAY:
772 /* int, enum, void or ptr is a sink for struct and array */
773 return !btf_type_is_modifier(next_type) &&
774 !btf_type_is_array(next_type) &&
775 !btf_type_is_struct(next_type);
776 default:
777 BUG();
778 }
779 }
780
781 static bool env_type_is_resolved(const struct btf_verifier_env *env,
782 u32 type_id)
783 {
784 return env->visit_states[type_id] == RESOLVED;
785 }
786
787 static int env_stack_push(struct btf_verifier_env *env,
788 const struct btf_type *t, u32 type_id)
789 {
790 struct resolve_vertex *v;
791
792 if (env->top_stack == MAX_RESOLVE_DEPTH)
793 return -E2BIG;
794
795 if (env->visit_states[type_id] != NOT_VISITED)
796 return -EEXIST;
797
798 env->visit_states[type_id] = VISITED;
799
800 v = &env->stack[env->top_stack++];
801 v->t = t;
802 v->type_id = type_id;
803 v->next_member = 0;
804
805 if (env->resolve_mode == RESOLVE_TBD) {
806 if (btf_type_is_ptr(t))
807 env->resolve_mode = RESOLVE_PTR;
808 else if (btf_type_is_struct(t) || btf_type_is_array(t))
809 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
810 }
811
812 return 0;
813 }
814
815 static void env_stack_set_next_member(struct btf_verifier_env *env,
816 u16 next_member)
817 {
818 env->stack[env->top_stack - 1].next_member = next_member;
819 }
820
821 static void env_stack_pop_resolved(struct btf_verifier_env *env,
822 u32 resolved_type_id,
823 u32 resolved_size)
824 {
825 u32 type_id = env->stack[--(env->top_stack)].type_id;
826 struct btf *btf = env->btf;
827
828 btf->resolved_sizes[type_id] = resolved_size;
829 btf->resolved_ids[type_id] = resolved_type_id;
830 env->visit_states[type_id] = RESOLVED;
831 }
832
833 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
834 {
835 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
836 }
837
838 /* The input param "type_id" must point to a needs_resolve type */
839 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
840 u32 *type_id)
841 {
842 *type_id = btf->resolved_ids[*type_id];
843 return btf_type_by_id(btf, *type_id);
844 }
845
846 const struct btf_type *btf_type_id_size(const struct btf *btf,
847 u32 *type_id, u32 *ret_size)
848 {
849 const struct btf_type *size_type;
850 u32 size_type_id = *type_id;
851 u32 size = 0;
852
853 size_type = btf_type_by_id(btf, size_type_id);
854 if (btf_type_is_void_or_null(size_type))
855 return NULL;
856
857 if (btf_type_has_size(size_type)) {
858 size = size_type->size;
859 } else if (btf_type_is_array(size_type)) {
860 size = btf->resolved_sizes[size_type_id];
861 } else if (btf_type_is_ptr(size_type)) {
862 size = sizeof(void *);
863 } else {
864 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
865 return NULL;
866
867 size = btf->resolved_sizes[size_type_id];
868 size_type_id = btf->resolved_ids[size_type_id];
869 size_type = btf_type_by_id(btf, size_type_id);
870 if (btf_type_is_void(size_type))
871 return NULL;
872 }
873
874 *type_id = size_type_id;
875 if (ret_size)
876 *ret_size = size;
877
878 return size_type;
879 }
880
881 static int btf_df_check_member(struct btf_verifier_env *env,
882 const struct btf_type *struct_type,
883 const struct btf_member *member,
884 const struct btf_type *member_type)
885 {
886 btf_verifier_log_basic(env, struct_type,
887 "Unsupported check_member");
888 return -EINVAL;
889 }
890
891 static int btf_df_resolve(struct btf_verifier_env *env,
892 const struct resolve_vertex *v)
893 {
894 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
895 return -EINVAL;
896 }
897
898 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
899 u32 type_id, void *data, u8 bits_offsets,
900 struct seq_file *m)
901 {
902 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
903 }
904
905 static int btf_int_check_member(struct btf_verifier_env *env,
906 const struct btf_type *struct_type,
907 const struct btf_member *member,
908 const struct btf_type *member_type)
909 {
910 u32 int_data = btf_type_int(member_type);
911 u32 struct_bits_off = member->offset;
912 u32 struct_size = struct_type->size;
913 u32 nr_copy_bits;
914 u32 bytes_offset;
915
916 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
917 btf_verifier_log_member(env, struct_type, member,
918 "bits_offset exceeds U32_MAX");
919 return -EINVAL;
920 }
921
922 struct_bits_off += BTF_INT_OFFSET(int_data);
923 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
924 nr_copy_bits = BTF_INT_BITS(int_data) +
925 BITS_PER_BYTE_MASKED(struct_bits_off);
926
927 if (nr_copy_bits > BITS_PER_U64) {
928 btf_verifier_log_member(env, struct_type, member,
929 "nr_copy_bits exceeds 64");
930 return -EINVAL;
931 }
932
933 if (struct_size < bytes_offset ||
934 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
935 btf_verifier_log_member(env, struct_type, member,
936 "Member exceeds struct_size");
937 return -EINVAL;
938 }
939
940 return 0;
941 }
942
943 static s32 btf_int_check_meta(struct btf_verifier_env *env,
944 const struct btf_type *t,
945 u32 meta_left)
946 {
947 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
948 u16 encoding;
949
950 if (meta_left < meta_needed) {
951 btf_verifier_log_basic(env, t,
952 "meta_left:%u meta_needed:%u",
953 meta_left, meta_needed);
954 return -EINVAL;
955 }
956
957 if (btf_type_vlen(t)) {
958 btf_verifier_log_type(env, t, "vlen != 0");
959 return -EINVAL;
960 }
961
962 int_data = btf_type_int(t);
963 if (int_data & ~BTF_INT_MASK) {
964 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
965 int_data);
966 return -EINVAL;
967 }
968
969 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
970
971 if (nr_bits > BITS_PER_U64) {
972 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
973 BITS_PER_U64);
974 return -EINVAL;
975 }
976
977 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
978 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
979 return -EINVAL;
980 }
981
982 /*
983 * Only one of the encoding bits is allowed and it
984 * should be sufficient for the pretty print purpose (i.e. decoding).
985 * Multiple bits can be allowed later if it is found
986 * to be insufficient.
987 */
988 encoding = BTF_INT_ENCODING(int_data);
989 if (encoding &&
990 encoding != BTF_INT_SIGNED &&
991 encoding != BTF_INT_CHAR &&
992 encoding != BTF_INT_BOOL) {
993 btf_verifier_log_type(env, t, "Unsupported encoding");
994 return -ENOTSUPP;
995 }
996
997 btf_verifier_log_type(env, t, NULL);
998
999 return meta_needed;
1000 }
1001
1002 static void btf_int_log(struct btf_verifier_env *env,
1003 const struct btf_type *t)
1004 {
1005 int int_data = btf_type_int(t);
1006
1007 btf_verifier_log(env,
1008 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1009 t->size, BTF_INT_OFFSET(int_data),
1010 BTF_INT_BITS(int_data),
1011 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1012 }
1013
1014 static void btf_int_bits_seq_show(const struct btf *btf,
1015 const struct btf_type *t,
1016 void *data, u8 bits_offset,
1017 struct seq_file *m)
1018 {
1019 u16 left_shift_bits, right_shift_bits;
1020 u32 int_data = btf_type_int(t);
1021 u8 nr_bits = BTF_INT_BITS(int_data);
1022 u8 total_bits_offset;
1023 u8 nr_copy_bytes;
1024 u8 nr_copy_bits;
1025 u64 print_num;
1026
1027 /*
1028 * bits_offset is at most 7.
1029 * BTF_INT_OFFSET() cannot exceed 64 bits.
1030 */
1031 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1032 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1033 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1034 nr_copy_bits = nr_bits + bits_offset;
1035 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1036
1037 print_num = 0;
1038 memcpy(&print_num, data, nr_copy_bytes);
1039
1040 #ifdef __BIG_ENDIAN_BITFIELD
1041 left_shift_bits = bits_offset;
1042 #else
1043 left_shift_bits = BITS_PER_U64 - nr_copy_bits;
1044 #endif
1045 right_shift_bits = BITS_PER_U64 - nr_bits;
1046
1047 print_num <<= left_shift_bits;
1048 print_num >>= right_shift_bits;
1049
1050 seq_printf(m, "0x%llx", print_num);
1051 }
1052
1053 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1054 u32 type_id, void *data, u8 bits_offset,
1055 struct seq_file *m)
1056 {
1057 u32 int_data = btf_type_int(t);
1058 u8 encoding = BTF_INT_ENCODING(int_data);
1059 bool sign = encoding & BTF_INT_SIGNED;
1060 u8 nr_bits = BTF_INT_BITS(int_data);
1061
1062 if (bits_offset || BTF_INT_OFFSET(int_data) ||
1063 BITS_PER_BYTE_MASKED(nr_bits)) {
1064 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1065 return;
1066 }
1067
1068 switch (nr_bits) {
1069 case 64:
1070 if (sign)
1071 seq_printf(m, "%lld", *(s64 *)data);
1072 else
1073 seq_printf(m, "%llu", *(u64 *)data);
1074 break;
1075 case 32:
1076 if (sign)
1077 seq_printf(m, "%d", *(s32 *)data);
1078 else
1079 seq_printf(m, "%u", *(u32 *)data);
1080 break;
1081 case 16:
1082 if (sign)
1083 seq_printf(m, "%d", *(s16 *)data);
1084 else
1085 seq_printf(m, "%u", *(u16 *)data);
1086 break;
1087 case 8:
1088 if (sign)
1089 seq_printf(m, "%d", *(s8 *)data);
1090 else
1091 seq_printf(m, "%u", *(u8 *)data);
1092 break;
1093 default:
1094 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1095 }
1096 }
1097
1098 static const struct btf_kind_operations int_ops = {
1099 .check_meta = btf_int_check_meta,
1100 .resolve = btf_df_resolve,
1101 .check_member = btf_int_check_member,
1102 .log_details = btf_int_log,
1103 .seq_show = btf_int_seq_show,
1104 };
1105
1106 static int btf_modifier_check_member(struct btf_verifier_env *env,
1107 const struct btf_type *struct_type,
1108 const struct btf_member *member,
1109 const struct btf_type *member_type)
1110 {
1111 const struct btf_type *resolved_type;
1112 u32 resolved_type_id = member->type;
1113 struct btf_member resolved_member;
1114 struct btf *btf = env->btf;
1115
1116 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1117 if (!resolved_type) {
1118 btf_verifier_log_member(env, struct_type, member,
1119 "Invalid member");
1120 return -EINVAL;
1121 }
1122
1123 resolved_member = *member;
1124 resolved_member.type = resolved_type_id;
1125
1126 return btf_type_ops(resolved_type)->check_member(env, struct_type,
1127 &resolved_member,
1128 resolved_type);
1129 }
1130
1131 static int btf_ptr_check_member(struct btf_verifier_env *env,
1132 const struct btf_type *struct_type,
1133 const struct btf_member *member,
1134 const struct btf_type *member_type)
1135 {
1136 u32 struct_size, struct_bits_off, bytes_offset;
1137
1138 struct_size = struct_type->size;
1139 struct_bits_off = member->offset;
1140 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1141
1142 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1143 btf_verifier_log_member(env, struct_type, member,
1144 "Member is not byte aligned");
1145 return -EINVAL;
1146 }
1147
1148 if (struct_size - bytes_offset < sizeof(void *)) {
1149 btf_verifier_log_member(env, struct_type, member,
1150 "Member exceeds struct_size");
1151 return -EINVAL;
1152 }
1153
1154 return 0;
1155 }
1156
1157 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1158 const struct btf_type *t,
1159 u32 meta_left)
1160 {
1161 if (btf_type_vlen(t)) {
1162 btf_verifier_log_type(env, t, "vlen != 0");
1163 return -EINVAL;
1164 }
1165
1166 if (!BTF_TYPE_ID_VALID(t->type)) {
1167 btf_verifier_log_type(env, t, "Invalid type_id");
1168 return -EINVAL;
1169 }
1170
1171 btf_verifier_log_type(env, t, NULL);
1172
1173 return 0;
1174 }
1175
1176 static int btf_modifier_resolve(struct btf_verifier_env *env,
1177 const struct resolve_vertex *v)
1178 {
1179 const struct btf_type *t = v->t;
1180 const struct btf_type *next_type;
1181 u32 next_type_id = t->type;
1182 struct btf *btf = env->btf;
1183 u32 next_type_size = 0;
1184
1185 next_type = btf_type_by_id(btf, next_type_id);
1186 if (!next_type) {
1187 btf_verifier_log_type(env, v->t, "Invalid type_id");
1188 return -EINVAL;
1189 }
1190
1191 /* "typedef void new_void", "const void"...etc */
1192 if (btf_type_is_void(next_type))
1193 goto resolved;
1194
1195 if (!env_type_is_resolve_sink(env, next_type) &&
1196 !env_type_is_resolved(env, next_type_id))
1197 return env_stack_push(env, next_type, next_type_id);
1198
1199 /* Figure out the resolved next_type_id with size.
1200 * They will be stored in the current modifier's
1201 * resolved_ids and resolved_sizes such that it can
1202 * save us a few type-following when we use it later (e.g. in
1203 * pretty print).
1204 */
1205 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1206 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1207 btf_verifier_log_type(env, v->t, "Invalid type_id");
1208 return -EINVAL;
1209 }
1210
1211 resolved:
1212 env_stack_pop_resolved(env, next_type_id, next_type_size);
1213
1214 return 0;
1215 }
1216
1217 static int btf_ptr_resolve(struct btf_verifier_env *env,
1218 const struct resolve_vertex *v)
1219 {
1220 const struct btf_type *next_type;
1221 const struct btf_type *t = v->t;
1222 u32 next_type_id = t->type;
1223 struct btf *btf = env->btf;
1224 u32 next_type_size = 0;
1225
1226 next_type = btf_type_by_id(btf, next_type_id);
1227 if (!next_type) {
1228 btf_verifier_log_type(env, v->t, "Invalid type_id");
1229 return -EINVAL;
1230 }
1231
1232 /* "void *" */
1233 if (btf_type_is_void(next_type))
1234 goto resolved;
1235
1236 if (!env_type_is_resolve_sink(env, next_type) &&
1237 !env_type_is_resolved(env, next_type_id))
1238 return env_stack_push(env, next_type, next_type_id);
1239
1240 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1241 * the modifier may have stopped resolving when it was resolved
1242 * to a ptr (last-resolved-ptr).
1243 *
1244 * We now need to continue from the last-resolved-ptr to
1245 * ensure the last-resolved-ptr will not referring back to
1246 * the currenct ptr (t).
1247 */
1248 if (btf_type_is_modifier(next_type)) {
1249 const struct btf_type *resolved_type;
1250 u32 resolved_type_id;
1251
1252 resolved_type_id = next_type_id;
1253 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1254
1255 if (btf_type_is_ptr(resolved_type) &&
1256 !env_type_is_resolve_sink(env, resolved_type) &&
1257 !env_type_is_resolved(env, resolved_type_id))
1258 return env_stack_push(env, resolved_type,
1259 resolved_type_id);
1260 }
1261
1262 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1263 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1264 btf_verifier_log_type(env, v->t, "Invalid type_id");
1265 return -EINVAL;
1266 }
1267
1268 resolved:
1269 env_stack_pop_resolved(env, next_type_id, 0);
1270
1271 return 0;
1272 }
1273
1274 static void btf_modifier_seq_show(const struct btf *btf,
1275 const struct btf_type *t,
1276 u32 type_id, void *data,
1277 u8 bits_offset, struct seq_file *m)
1278 {
1279 t = btf_type_id_resolve(btf, &type_id);
1280
1281 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1282 }
1283
1284 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1285 u32 type_id, void *data, u8 bits_offset,
1286 struct seq_file *m)
1287 {
1288 /* It is a hashed value */
1289 seq_printf(m, "%p", *(void **)data);
1290 }
1291
1292 static void btf_ref_type_log(struct btf_verifier_env *env,
1293 const struct btf_type *t)
1294 {
1295 btf_verifier_log(env, "type_id=%u", t->type);
1296 }
1297
1298 static struct btf_kind_operations modifier_ops = {
1299 .check_meta = btf_ref_type_check_meta,
1300 .resolve = btf_modifier_resolve,
1301 .check_member = btf_modifier_check_member,
1302 .log_details = btf_ref_type_log,
1303 .seq_show = btf_modifier_seq_show,
1304 };
1305
1306 static struct btf_kind_operations ptr_ops = {
1307 .check_meta = btf_ref_type_check_meta,
1308 .resolve = btf_ptr_resolve,
1309 .check_member = btf_ptr_check_member,
1310 .log_details = btf_ref_type_log,
1311 .seq_show = btf_ptr_seq_show,
1312 };
1313
1314 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1315 const struct btf_type *t,
1316 u32 meta_left)
1317 {
1318 if (btf_type_vlen(t)) {
1319 btf_verifier_log_type(env, t, "vlen != 0");
1320 return -EINVAL;
1321 }
1322
1323 if (t->type) {
1324 btf_verifier_log_type(env, t, "type != 0");
1325 return -EINVAL;
1326 }
1327
1328 btf_verifier_log_type(env, t, NULL);
1329
1330 return 0;
1331 }
1332
1333 static struct btf_kind_operations fwd_ops = {
1334 .check_meta = btf_fwd_check_meta,
1335 .resolve = btf_df_resolve,
1336 .check_member = btf_df_check_member,
1337 .log_details = btf_ref_type_log,
1338 .seq_show = btf_df_seq_show,
1339 };
1340
1341 static int btf_array_check_member(struct btf_verifier_env *env,
1342 const struct btf_type *struct_type,
1343 const struct btf_member *member,
1344 const struct btf_type *member_type)
1345 {
1346 u32 struct_bits_off = member->offset;
1347 u32 struct_size, bytes_offset;
1348 u32 array_type_id, array_size;
1349 struct btf *btf = env->btf;
1350
1351 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1352 btf_verifier_log_member(env, struct_type, member,
1353 "Member is not byte aligned");
1354 return -EINVAL;
1355 }
1356
1357 array_type_id = member->type;
1358 btf_type_id_size(btf, &array_type_id, &array_size);
1359 struct_size = struct_type->size;
1360 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1361 if (struct_size - bytes_offset < array_size) {
1362 btf_verifier_log_member(env, struct_type, member,
1363 "Member exceeds struct_size");
1364 return -EINVAL;
1365 }
1366
1367 return 0;
1368 }
1369
1370 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1371 const struct btf_type *t,
1372 u32 meta_left)
1373 {
1374 const struct btf_array *array = btf_type_array(t);
1375 u32 meta_needed = sizeof(*array);
1376
1377 if (meta_left < meta_needed) {
1378 btf_verifier_log_basic(env, t,
1379 "meta_left:%u meta_needed:%u",
1380 meta_left, meta_needed);
1381 return -EINVAL;
1382 }
1383
1384 if (btf_type_vlen(t)) {
1385 btf_verifier_log_type(env, t, "vlen != 0");
1386 return -EINVAL;
1387 }
1388
1389 if (t->size) {
1390 btf_verifier_log_type(env, t, "size != 0");
1391 return -EINVAL;
1392 }
1393
1394 /* Array elem type and index type cannot be in type void,
1395 * so !array->type and !array->index_type are not allowed.
1396 */
1397 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1398 btf_verifier_log_type(env, t, "Invalid elem");
1399 return -EINVAL;
1400 }
1401
1402 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1403 btf_verifier_log_type(env, t, "Invalid index");
1404 return -EINVAL;
1405 }
1406
1407 btf_verifier_log_type(env, t, NULL);
1408
1409 return meta_needed;
1410 }
1411
1412 static int btf_array_resolve(struct btf_verifier_env *env,
1413 const struct resolve_vertex *v)
1414 {
1415 const struct btf_array *array = btf_type_array(v->t);
1416 const struct btf_type *elem_type, *index_type;
1417 u32 elem_type_id, index_type_id;
1418 struct btf *btf = env->btf;
1419 u32 elem_size;
1420
1421 /* Check array->index_type */
1422 index_type_id = array->index_type;
1423 index_type = btf_type_by_id(btf, index_type_id);
1424 if (btf_type_is_void_or_null(index_type)) {
1425 btf_verifier_log_type(env, v->t, "Invalid index");
1426 return -EINVAL;
1427 }
1428
1429 if (!env_type_is_resolve_sink(env, index_type) &&
1430 !env_type_is_resolved(env, index_type_id))
1431 return env_stack_push(env, index_type, index_type_id);
1432
1433 index_type = btf_type_id_size(btf, &index_type_id, NULL);
1434 if (!index_type || !btf_type_is_int(index_type) ||
1435 !btf_type_int_is_regular(index_type)) {
1436 btf_verifier_log_type(env, v->t, "Invalid index");
1437 return -EINVAL;
1438 }
1439
1440 /* Check array->type */
1441 elem_type_id = array->type;
1442 elem_type = btf_type_by_id(btf, elem_type_id);
1443 if (btf_type_is_void_or_null(elem_type)) {
1444 btf_verifier_log_type(env, v->t,
1445 "Invalid elem");
1446 return -EINVAL;
1447 }
1448
1449 if (!env_type_is_resolve_sink(env, elem_type) &&
1450 !env_type_is_resolved(env, elem_type_id))
1451 return env_stack_push(env, elem_type, elem_type_id);
1452
1453 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1454 if (!elem_type) {
1455 btf_verifier_log_type(env, v->t, "Invalid elem");
1456 return -EINVAL;
1457 }
1458
1459 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1460 btf_verifier_log_type(env, v->t, "Invalid array of int");
1461 return -EINVAL;
1462 }
1463
1464 if (array->nelems && elem_size > U32_MAX / array->nelems) {
1465 btf_verifier_log_type(env, v->t,
1466 "Array size overflows U32_MAX");
1467 return -EINVAL;
1468 }
1469
1470 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1471
1472 return 0;
1473 }
1474
1475 static void btf_array_log(struct btf_verifier_env *env,
1476 const struct btf_type *t)
1477 {
1478 const struct btf_array *array = btf_type_array(t);
1479
1480 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1481 array->type, array->index_type, array->nelems);
1482 }
1483
1484 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1485 u32 type_id, void *data, u8 bits_offset,
1486 struct seq_file *m)
1487 {
1488 const struct btf_array *array = btf_type_array(t);
1489 const struct btf_kind_operations *elem_ops;
1490 const struct btf_type *elem_type;
1491 u32 i, elem_size, elem_type_id;
1492
1493 elem_type_id = array->type;
1494 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1495 elem_ops = btf_type_ops(elem_type);
1496 seq_puts(m, "[");
1497 for (i = 0; i < array->nelems; i++) {
1498 if (i)
1499 seq_puts(m, ",");
1500
1501 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1502 bits_offset, m);
1503 data += elem_size;
1504 }
1505 seq_puts(m, "]");
1506 }
1507
1508 static struct btf_kind_operations array_ops = {
1509 .check_meta = btf_array_check_meta,
1510 .resolve = btf_array_resolve,
1511 .check_member = btf_array_check_member,
1512 .log_details = btf_array_log,
1513 .seq_show = btf_array_seq_show,
1514 };
1515
1516 static int btf_struct_check_member(struct btf_verifier_env *env,
1517 const struct btf_type *struct_type,
1518 const struct btf_member *member,
1519 const struct btf_type *member_type)
1520 {
1521 u32 struct_bits_off = member->offset;
1522 u32 struct_size, bytes_offset;
1523
1524 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1525 btf_verifier_log_member(env, struct_type, member,
1526 "Member is not byte aligned");
1527 return -EINVAL;
1528 }
1529
1530 struct_size = struct_type->size;
1531 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1532 if (struct_size - bytes_offset < member_type->size) {
1533 btf_verifier_log_member(env, struct_type, member,
1534 "Member exceeds struct_size");
1535 return -EINVAL;
1536 }
1537
1538 return 0;
1539 }
1540
1541 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1542 const struct btf_type *t,
1543 u32 meta_left)
1544 {
1545 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1546 const struct btf_member *member;
1547 u32 meta_needed, last_offset;
1548 struct btf *btf = env->btf;
1549 u32 struct_size = t->size;
1550 u16 i;
1551
1552 meta_needed = btf_type_vlen(t) * sizeof(*member);
1553 if (meta_left < meta_needed) {
1554 btf_verifier_log_basic(env, t,
1555 "meta_left:%u meta_needed:%u",
1556 meta_left, meta_needed);
1557 return -EINVAL;
1558 }
1559
1560 btf_verifier_log_type(env, t, NULL);
1561
1562 last_offset = 0;
1563 for_each_member(i, t, member) {
1564 if (!btf_name_offset_valid(btf, member->name_off)) {
1565 btf_verifier_log_member(env, t, member,
1566 "Invalid member name_offset:%u",
1567 member->name_off);
1568 return -EINVAL;
1569 }
1570
1571 /* A member cannot be in type void */
1572 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1573 btf_verifier_log_member(env, t, member,
1574 "Invalid type_id");
1575 return -EINVAL;
1576 }
1577
1578 if (is_union && member->offset) {
1579 btf_verifier_log_member(env, t, member,
1580 "Invalid member bits_offset");
1581 return -EINVAL;
1582 }
1583
1584 /*
1585 * ">" instead of ">=" because the last member could be
1586 * "char a[0];"
1587 */
1588 if (last_offset > member->offset) {
1589 btf_verifier_log_member(env, t, member,
1590 "Invalid member bits_offset");
1591 return -EINVAL;
1592 }
1593
1594 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1595 btf_verifier_log_member(env, t, member,
1596 "Memmber bits_offset exceeds its struct size");
1597 return -EINVAL;
1598 }
1599
1600 btf_verifier_log_member(env, t, member, NULL);
1601 last_offset = member->offset;
1602 }
1603
1604 return meta_needed;
1605 }
1606
1607 static int btf_struct_resolve(struct btf_verifier_env *env,
1608 const struct resolve_vertex *v)
1609 {
1610 const struct btf_member *member;
1611 int err;
1612 u16 i;
1613
1614 /* Before continue resolving the next_member,
1615 * ensure the last member is indeed resolved to a
1616 * type with size info.
1617 */
1618 if (v->next_member) {
1619 const struct btf_type *last_member_type;
1620 const struct btf_member *last_member;
1621 u16 last_member_type_id;
1622
1623 last_member = btf_type_member(v->t) + v->next_member - 1;
1624 last_member_type_id = last_member->type;
1625 if (WARN_ON_ONCE(!env_type_is_resolved(env,
1626 last_member_type_id)))
1627 return -EINVAL;
1628
1629 last_member_type = btf_type_by_id(env->btf,
1630 last_member_type_id);
1631 err = btf_type_ops(last_member_type)->check_member(env, v->t,
1632 last_member,
1633 last_member_type);
1634 if (err)
1635 return err;
1636 }
1637
1638 for_each_member_from(i, v->next_member, v->t, member) {
1639 u32 member_type_id = member->type;
1640 const struct btf_type *member_type = btf_type_by_id(env->btf,
1641 member_type_id);
1642
1643 if (btf_type_is_void_or_null(member_type)) {
1644 btf_verifier_log_member(env, v->t, member,
1645 "Invalid member");
1646 return -EINVAL;
1647 }
1648
1649 if (!env_type_is_resolve_sink(env, member_type) &&
1650 !env_type_is_resolved(env, member_type_id)) {
1651 env_stack_set_next_member(env, i + 1);
1652 return env_stack_push(env, member_type, member_type_id);
1653 }
1654
1655 err = btf_type_ops(member_type)->check_member(env, v->t,
1656 member,
1657 member_type);
1658 if (err)
1659 return err;
1660 }
1661
1662 env_stack_pop_resolved(env, 0, 0);
1663
1664 return 0;
1665 }
1666
1667 static void btf_struct_log(struct btf_verifier_env *env,
1668 const struct btf_type *t)
1669 {
1670 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1671 }
1672
1673 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1674 u32 type_id, void *data, u8 bits_offset,
1675 struct seq_file *m)
1676 {
1677 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1678 const struct btf_member *member;
1679 u32 i;
1680
1681 seq_puts(m, "{");
1682 for_each_member(i, t, member) {
1683 const struct btf_type *member_type = btf_type_by_id(btf,
1684 member->type);
1685 u32 member_offset = member->offset;
1686 u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
1687 u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
1688 const struct btf_kind_operations *ops;
1689
1690 if (i)
1691 seq_puts(m, seq);
1692
1693 ops = btf_type_ops(member_type);
1694 ops->seq_show(btf, member_type, member->type,
1695 data + bytes_offset, bits8_offset, m);
1696 }
1697 seq_puts(m, "}");
1698 }
1699
1700 static struct btf_kind_operations struct_ops = {
1701 .check_meta = btf_struct_check_meta,
1702 .resolve = btf_struct_resolve,
1703 .check_member = btf_struct_check_member,
1704 .log_details = btf_struct_log,
1705 .seq_show = btf_struct_seq_show,
1706 };
1707
1708 static int btf_enum_check_member(struct btf_verifier_env *env,
1709 const struct btf_type *struct_type,
1710 const struct btf_member *member,
1711 const struct btf_type *member_type)
1712 {
1713 u32 struct_bits_off = member->offset;
1714 u32 struct_size, bytes_offset;
1715
1716 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1717 btf_verifier_log_member(env, struct_type, member,
1718 "Member is not byte aligned");
1719 return -EINVAL;
1720 }
1721
1722 struct_size = struct_type->size;
1723 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1724 if (struct_size - bytes_offset < sizeof(int)) {
1725 btf_verifier_log_member(env, struct_type, member,
1726 "Member exceeds struct_size");
1727 return -EINVAL;
1728 }
1729
1730 return 0;
1731 }
1732
1733 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1734 const struct btf_type *t,
1735 u32 meta_left)
1736 {
1737 const struct btf_enum *enums = btf_type_enum(t);
1738 struct btf *btf = env->btf;
1739 u16 i, nr_enums;
1740 u32 meta_needed;
1741
1742 nr_enums = btf_type_vlen(t);
1743 meta_needed = nr_enums * sizeof(*enums);
1744
1745 if (meta_left < meta_needed) {
1746 btf_verifier_log_basic(env, t,
1747 "meta_left:%u meta_needed:%u",
1748 meta_left, meta_needed);
1749 return -EINVAL;
1750 }
1751
1752 if (t->size != sizeof(int)) {
1753 btf_verifier_log_type(env, t, "Expected size:%zu",
1754 sizeof(int));
1755 return -EINVAL;
1756 }
1757
1758 btf_verifier_log_type(env, t, NULL);
1759
1760 for (i = 0; i < nr_enums; i++) {
1761 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
1762 btf_verifier_log(env, "\tInvalid name_offset:%u",
1763 enums[i].name_off);
1764 return -EINVAL;
1765 }
1766
1767 btf_verifier_log(env, "\t%s val=%d\n",
1768 btf_name_by_offset(btf, enums[i].name_off),
1769 enums[i].val);
1770 }
1771
1772 return meta_needed;
1773 }
1774
1775 static void btf_enum_log(struct btf_verifier_env *env,
1776 const struct btf_type *t)
1777 {
1778 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1779 }
1780
1781 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
1782 u32 type_id, void *data, u8 bits_offset,
1783 struct seq_file *m)
1784 {
1785 const struct btf_enum *enums = btf_type_enum(t);
1786 u32 i, nr_enums = btf_type_vlen(t);
1787 int v = *(int *)data;
1788
1789 for (i = 0; i < nr_enums; i++) {
1790 if (v == enums[i].val) {
1791 seq_printf(m, "%s",
1792 btf_name_by_offset(btf, enums[i].name_off));
1793 return;
1794 }
1795 }
1796
1797 seq_printf(m, "%d", v);
1798 }
1799
1800 static struct btf_kind_operations enum_ops = {
1801 .check_meta = btf_enum_check_meta,
1802 .resolve = btf_df_resolve,
1803 .check_member = btf_enum_check_member,
1804 .log_details = btf_enum_log,
1805 .seq_show = btf_enum_seq_show,
1806 };
1807
1808 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
1809 [BTF_KIND_INT] = &int_ops,
1810 [BTF_KIND_PTR] = &ptr_ops,
1811 [BTF_KIND_ARRAY] = &array_ops,
1812 [BTF_KIND_STRUCT] = &struct_ops,
1813 [BTF_KIND_UNION] = &struct_ops,
1814 [BTF_KIND_ENUM] = &enum_ops,
1815 [BTF_KIND_FWD] = &fwd_ops,
1816 [BTF_KIND_TYPEDEF] = &modifier_ops,
1817 [BTF_KIND_VOLATILE] = &modifier_ops,
1818 [BTF_KIND_CONST] = &modifier_ops,
1819 [BTF_KIND_RESTRICT] = &modifier_ops,
1820 };
1821
1822 static s32 btf_check_meta(struct btf_verifier_env *env,
1823 const struct btf_type *t,
1824 u32 meta_left)
1825 {
1826 u32 saved_meta_left = meta_left;
1827 s32 var_meta_size;
1828
1829 if (meta_left < sizeof(*t)) {
1830 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
1831 env->log_type_id, meta_left, sizeof(*t));
1832 return -EINVAL;
1833 }
1834 meta_left -= sizeof(*t);
1835
1836 if (t->info & ~BTF_INFO_MASK) {
1837 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
1838 env->log_type_id, t->info);
1839 return -EINVAL;
1840 }
1841
1842 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
1843 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
1844 btf_verifier_log(env, "[%u] Invalid kind:%u",
1845 env->log_type_id, BTF_INFO_KIND(t->info));
1846 return -EINVAL;
1847 }
1848
1849 if (!btf_name_offset_valid(env->btf, t->name_off)) {
1850 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
1851 env->log_type_id, t->name_off);
1852 return -EINVAL;
1853 }
1854
1855 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
1856 if (var_meta_size < 0)
1857 return var_meta_size;
1858
1859 meta_left -= var_meta_size;
1860
1861 return saved_meta_left - meta_left;
1862 }
1863
1864 static int btf_check_all_metas(struct btf_verifier_env *env)
1865 {
1866 struct btf *btf = env->btf;
1867 struct btf_header *hdr;
1868 void *cur, *end;
1869
1870 hdr = &btf->hdr;
1871 cur = btf->nohdr_data + hdr->type_off;
1872 end = cur + hdr->type_len;
1873
1874 env->log_type_id = 1;
1875 while (cur < end) {
1876 struct btf_type *t = cur;
1877 s32 meta_size;
1878
1879 meta_size = btf_check_meta(env, t, end - cur);
1880 if (meta_size < 0)
1881 return meta_size;
1882
1883 btf_add_type(env, t);
1884 cur += meta_size;
1885 env->log_type_id++;
1886 }
1887
1888 return 0;
1889 }
1890
1891 static int btf_resolve(struct btf_verifier_env *env,
1892 const struct btf_type *t, u32 type_id)
1893 {
1894 const struct resolve_vertex *v;
1895 int err = 0;
1896
1897 env->resolve_mode = RESOLVE_TBD;
1898 env_stack_push(env, t, type_id);
1899 while (!err && (v = env_stack_peak(env))) {
1900 env->log_type_id = v->type_id;
1901 err = btf_type_ops(v->t)->resolve(env, v);
1902 }
1903
1904 env->log_type_id = type_id;
1905 if (err == -E2BIG)
1906 btf_verifier_log_type(env, t,
1907 "Exceeded max resolving depth:%u",
1908 MAX_RESOLVE_DEPTH);
1909 else if (err == -EEXIST)
1910 btf_verifier_log_type(env, t, "Loop detected");
1911
1912 return err;
1913 }
1914
1915 static bool btf_resolve_valid(struct btf_verifier_env *env,
1916 const struct btf_type *t,
1917 u32 type_id)
1918 {
1919 struct btf *btf = env->btf;
1920
1921 if (!env_type_is_resolved(env, type_id))
1922 return false;
1923
1924 if (btf_type_is_struct(t))
1925 return !btf->resolved_ids[type_id] &&
1926 !btf->resolved_sizes[type_id];
1927
1928 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
1929 t = btf_type_id_resolve(btf, &type_id);
1930 return t && !btf_type_is_modifier(t);
1931 }
1932
1933 if (btf_type_is_array(t)) {
1934 const struct btf_array *array = btf_type_array(t);
1935 const struct btf_type *elem_type;
1936 u32 elem_type_id = array->type;
1937 u32 elem_size;
1938
1939 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1940 return elem_type && !btf_type_is_modifier(elem_type) &&
1941 (array->nelems * elem_size ==
1942 btf->resolved_sizes[type_id]);
1943 }
1944
1945 return false;
1946 }
1947
1948 static int btf_check_all_types(struct btf_verifier_env *env)
1949 {
1950 struct btf *btf = env->btf;
1951 u32 type_id;
1952 int err;
1953
1954 err = env_resolve_init(env);
1955 if (err)
1956 return err;
1957
1958 env->phase++;
1959 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
1960 const struct btf_type *t = btf_type_by_id(btf, type_id);
1961
1962 env->log_type_id = type_id;
1963 if (btf_type_needs_resolve(t) &&
1964 !env_type_is_resolved(env, type_id)) {
1965 err = btf_resolve(env, t, type_id);
1966 if (err)
1967 return err;
1968 }
1969
1970 if (btf_type_needs_resolve(t) &&
1971 !btf_resolve_valid(env, t, type_id)) {
1972 btf_verifier_log_type(env, t, "Invalid resolve state");
1973 return -EINVAL;
1974 }
1975 }
1976
1977 return 0;
1978 }
1979
1980 static int btf_parse_type_sec(struct btf_verifier_env *env)
1981 {
1982 const struct btf_header *hdr = &env->btf->hdr;
1983 int err;
1984
1985 /* Type section must align to 4 bytes */
1986 if (hdr->type_off & (sizeof(u32) - 1)) {
1987 btf_verifier_log(env, "Unaligned type_off");
1988 return -EINVAL;
1989 }
1990
1991 if (!hdr->type_len) {
1992 btf_verifier_log(env, "No type found");
1993 return -EINVAL;
1994 }
1995
1996 err = btf_check_all_metas(env);
1997 if (err)
1998 return err;
1999
2000 return btf_check_all_types(env);
2001 }
2002
2003 static int btf_parse_str_sec(struct btf_verifier_env *env)
2004 {
2005 const struct btf_header *hdr;
2006 struct btf *btf = env->btf;
2007 const char *start, *end;
2008
2009 hdr = &btf->hdr;
2010 start = btf->nohdr_data + hdr->str_off;
2011 end = start + hdr->str_len;
2012
2013 if (end != btf->data + btf->data_size) {
2014 btf_verifier_log(env, "String section is not at the end");
2015 return -EINVAL;
2016 }
2017
2018 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2019 start[0] || end[-1]) {
2020 btf_verifier_log(env, "Invalid string section");
2021 return -EINVAL;
2022 }
2023
2024 btf->strings = start;
2025
2026 return 0;
2027 }
2028
2029 static const size_t btf_sec_info_offset[] = {
2030 offsetof(struct btf_header, type_off),
2031 offsetof(struct btf_header, str_off),
2032 };
2033
2034 static int btf_sec_info_cmp(const void *a, const void *b)
2035 {
2036 const struct btf_sec_info *x = a;
2037 const struct btf_sec_info *y = b;
2038
2039 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2040 }
2041
2042 static int btf_check_sec_info(struct btf_verifier_env *env,
2043 u32 btf_data_size)
2044 {
2045 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2046 u32 total, expected_total, i;
2047 const struct btf_header *hdr;
2048 const struct btf *btf;
2049
2050 btf = env->btf;
2051 hdr = &btf->hdr;
2052
2053 /* Populate the secs from hdr */
2054 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2055 secs[i] = *(struct btf_sec_info *)((void *)hdr +
2056 btf_sec_info_offset[i]);
2057
2058 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2059 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2060
2061 /* Check for gaps and overlap among sections */
2062 total = 0;
2063 expected_total = btf_data_size - hdr->hdr_len;
2064 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2065 if (expected_total < secs[i].off) {
2066 btf_verifier_log(env, "Invalid section offset");
2067 return -EINVAL;
2068 }
2069 if (total < secs[i].off) {
2070 /* gap */
2071 btf_verifier_log(env, "Unsupported section found");
2072 return -EINVAL;
2073 }
2074 if (total > secs[i].off) {
2075 btf_verifier_log(env, "Section overlap found");
2076 return -EINVAL;
2077 }
2078 if (expected_total - total < secs[i].len) {
2079 btf_verifier_log(env,
2080 "Total section length too long");
2081 return -EINVAL;
2082 }
2083 total += secs[i].len;
2084 }
2085
2086 /* There is data other than hdr and known sections */
2087 if (expected_total != total) {
2088 btf_verifier_log(env, "Unsupported section found");
2089 return -EINVAL;
2090 }
2091
2092 return 0;
2093 }
2094
2095 static int btf_parse_hdr(struct btf_verifier_env *env)
2096 {
2097 u32 hdr_len, hdr_copy, btf_data_size;
2098 const struct btf_header *hdr;
2099 struct btf *btf;
2100 int err;
2101
2102 btf = env->btf;
2103 btf_data_size = btf->data_size;
2104
2105 if (btf_data_size <
2106 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2107 btf_verifier_log(env, "hdr_len not found");
2108 return -EINVAL;
2109 }
2110
2111 hdr = btf->data;
2112 hdr_len = hdr->hdr_len;
2113 if (btf_data_size < hdr_len) {
2114 btf_verifier_log(env, "btf_header not found");
2115 return -EINVAL;
2116 }
2117
2118 /* Ensure the unsupported header fields are zero */
2119 if (hdr_len > sizeof(btf->hdr)) {
2120 u8 *expected_zero = btf->data + sizeof(btf->hdr);
2121 u8 *end = btf->data + hdr_len;
2122
2123 for (; expected_zero < end; expected_zero++) {
2124 if (*expected_zero) {
2125 btf_verifier_log(env, "Unsupported btf_header");
2126 return -E2BIG;
2127 }
2128 }
2129 }
2130
2131 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2132 memcpy(&btf->hdr, btf->data, hdr_copy);
2133
2134 hdr = &btf->hdr;
2135
2136 btf_verifier_log_hdr(env, btf_data_size);
2137
2138 if (hdr->magic != BTF_MAGIC) {
2139 btf_verifier_log(env, "Invalid magic");
2140 return -EINVAL;
2141 }
2142
2143 if (hdr->version != BTF_VERSION) {
2144 btf_verifier_log(env, "Unsupported version");
2145 return -ENOTSUPP;
2146 }
2147
2148 if (hdr->flags) {
2149 btf_verifier_log(env, "Unsupported flags");
2150 return -ENOTSUPP;
2151 }
2152
2153 if (btf_data_size == hdr->hdr_len) {
2154 btf_verifier_log(env, "No data");
2155 return -EINVAL;
2156 }
2157
2158 err = btf_check_sec_info(env, btf_data_size);
2159 if (err)
2160 return err;
2161
2162 return 0;
2163 }
2164
2165 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2166 u32 log_level, char __user *log_ubuf, u32 log_size)
2167 {
2168 struct btf_verifier_env *env = NULL;
2169 struct bpf_verifier_log *log;
2170 struct btf *btf = NULL;
2171 u8 *data;
2172 int err;
2173
2174 if (btf_data_size > BTF_MAX_SIZE)
2175 return ERR_PTR(-E2BIG);
2176
2177 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2178 if (!env)
2179 return ERR_PTR(-ENOMEM);
2180
2181 log = &env->log;
2182 if (log_level || log_ubuf || log_size) {
2183 /* user requested verbose verifier output
2184 * and supplied buffer to store the verification trace
2185 */
2186 log->level = log_level;
2187 log->ubuf = log_ubuf;
2188 log->len_total = log_size;
2189
2190 /* log attributes have to be sane */
2191 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2192 !log->level || !log->ubuf) {
2193 err = -EINVAL;
2194 goto errout;
2195 }
2196 }
2197
2198 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2199 if (!btf) {
2200 err = -ENOMEM;
2201 goto errout;
2202 }
2203 env->btf = btf;
2204
2205 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2206 if (!data) {
2207 err = -ENOMEM;
2208 goto errout;
2209 }
2210
2211 btf->data = data;
2212 btf->data_size = btf_data_size;
2213
2214 if (copy_from_user(data, btf_data, btf_data_size)) {
2215 err = -EFAULT;
2216 goto errout;
2217 }
2218
2219 err = btf_parse_hdr(env);
2220 if (err)
2221 goto errout;
2222
2223 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2224
2225 err = btf_parse_str_sec(env);
2226 if (err)
2227 goto errout;
2228
2229 err = btf_parse_type_sec(env);
2230 if (err)
2231 goto errout;
2232
2233 if (log->level && bpf_verifier_log_full(log)) {
2234 err = -ENOSPC;
2235 goto errout;
2236 }
2237
2238 btf_verifier_env_free(env);
2239 refcount_set(&btf->refcnt, 1);
2240 return btf;
2241
2242 errout:
2243 btf_verifier_env_free(env);
2244 if (btf)
2245 btf_free(btf);
2246 return ERR_PTR(err);
2247 }
2248
2249 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2250 struct seq_file *m)
2251 {
2252 const struct btf_type *t = btf_type_by_id(btf, type_id);
2253
2254 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2255 }
2256
2257 static int btf_release(struct inode *inode, struct file *filp)
2258 {
2259 btf_put(filp->private_data);
2260 return 0;
2261 }
2262
2263 const struct file_operations btf_fops = {
2264 .release = btf_release,
2265 };
2266
2267 static int __btf_new_fd(struct btf *btf)
2268 {
2269 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2270 }
2271
2272 int btf_new_fd(const union bpf_attr *attr)
2273 {
2274 struct btf *btf;
2275 int ret;
2276
2277 btf = btf_parse(u64_to_user_ptr(attr->btf),
2278 attr->btf_size, attr->btf_log_level,
2279 u64_to_user_ptr(attr->btf_log_buf),
2280 attr->btf_log_size);
2281 if (IS_ERR(btf))
2282 return PTR_ERR(btf);
2283
2284 ret = btf_alloc_id(btf);
2285 if (ret) {
2286 btf_free(btf);
2287 return ret;
2288 }
2289
2290 /*
2291 * The BTF ID is published to the userspace.
2292 * All BTF free must go through call_rcu() from
2293 * now on (i.e. free by calling btf_put()).
2294 */
2295
2296 ret = __btf_new_fd(btf);
2297 if (ret < 0)
2298 btf_put(btf);
2299
2300 return ret;
2301 }
2302
2303 struct btf *btf_get_by_fd(int fd)
2304 {
2305 struct btf *btf;
2306 struct fd f;
2307
2308 f = fdget(fd);
2309
2310 if (!f.file)
2311 return ERR_PTR(-EBADF);
2312
2313 if (f.file->f_op != &btf_fops) {
2314 fdput(f);
2315 return ERR_PTR(-EINVAL);
2316 }
2317
2318 btf = f.file->private_data;
2319 refcount_inc(&btf->refcnt);
2320 fdput(f);
2321
2322 return btf;
2323 }
2324
2325 int btf_get_info_by_fd(const struct btf *btf,
2326 const union bpf_attr *attr,
2327 union bpf_attr __user *uattr)
2328 {
2329 struct bpf_btf_info __user *uinfo;
2330 struct bpf_btf_info info = {};
2331 u32 info_copy, btf_copy;
2332 void __user *ubtf;
2333 u32 uinfo_len;
2334
2335 uinfo = u64_to_user_ptr(attr->info.info);
2336 uinfo_len = attr->info.info_len;
2337
2338 info_copy = min_t(u32, uinfo_len, sizeof(info));
2339 if (copy_from_user(&info, uinfo, info_copy))
2340 return -EFAULT;
2341
2342 info.id = btf->id;
2343 ubtf = u64_to_user_ptr(info.btf);
2344 btf_copy = min_t(u32, btf->data_size, info.btf_size);
2345 if (copy_to_user(ubtf, btf->data, btf_copy))
2346 return -EFAULT;
2347 info.btf_size = btf->data_size;
2348
2349 if (copy_to_user(uinfo, &info, info_copy) ||
2350 put_user(info_copy, &uattr->info.info_len))
2351 return -EFAULT;
2352
2353 return 0;
2354 }
2355
2356 int btf_get_fd_by_id(u32 id)
2357 {
2358 struct btf *btf;
2359 int fd;
2360
2361 rcu_read_lock();
2362 btf = idr_find(&btf_idr, id);
2363 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
2364 btf = ERR_PTR(-ENOENT);
2365 rcu_read_unlock();
2366
2367 if (IS_ERR(btf))
2368 return PTR_ERR(btf);
2369
2370 fd = __btf_new_fd(btf);
2371 if (fd < 0)
2372 btf_put(btf);
2373
2374 return fd;
2375 }
2376
2377 u32 btf_id(const struct btf *btf)
2378 {
2379 return btf->id;
2380 }