From 0e3b74e26280f2cf8753717a950b97d424da6046 Mon Sep 17 00:00:00 2001 From: Kim Phillips Date: Thu, 2 May 2019 15:29:47 +0000 Subject: [PATCH] perf/x86/amd: Update generic hardware cache events for Family 17h MIME-Version: 1.0 Content-Type: text/plain; charset=utf8 Content-Transfer-Encoding: 8bit Add a new amd_hw_cache_event_ids_f17h assignment structure set for AMD families 17h and above, since a lot has changed. Specifically: L1 Data Cache The data cache access counter remains the same on Family 17h. For DC misses, PMCx041's definition changes with Family 17h, so instead we use the L2 cache accesses from L1 data cache misses counter (PMCx060,umask=0xc8). For DC hardware prefetch events, Family 17h breaks compatibility for PMCx067 "Data Prefetcher", so instead, we use PMCx05a "Hardware Prefetch DC Fills." L1 Instruction Cache PMCs 0x80 and 0x81 (32-byte IC fetches and misses) are backward compatible on Family 17h. For prefetches, we remove the erroneous PMCx04B assignment which counts how many software data cache prefetch load instructions were dispatched. LL - Last Level Cache Removing PMCs 7D, 7E, and 7F assignments, as they do not exist on Family 17h, where the last level cache is L3. L3 counters can be accessed using the existing AMD Uncore driver. Data TLB On Intel machines, data TLB accesses ("dTLB-loads") are assigned to counters that count load/store instructions retired. This is inconsistent with instruction TLB accesses, where Intel implementations report iTLB misses that hit in the STLB. Ideally, dTLB-loads would count higher level dTLB misses that hit in lower level TLBs, and dTLB-load-misses would report those that also missed in those lower-level TLBs, therefore causing a page table walk. That would be consistent with instruction TLB operation, remove the redundancy between dTLB-loads and L1-dcache-loads, and prevent perf from producing artificially low percentage ratios, i.e. the "0.01%" below: 42,550,869 L1-dcache-loads 41,591,860 dTLB-loads 4,802 dTLB-load-misses # 0.01% of all dTLB cache hits 7,283,682 L1-dcache-stores 7,912,392 dTLB-stores 310 dTLB-store-misses On AMD Families prior to 17h, the "Data Cache Accesses" counter is used, which is slightly better than load/store instructions retired, but still counts in terms of individual load/store operations instead of TLB operations. So, for AMD Families 17h and higher, this patch assigns "dTLB-loads" to a counter for L1 dTLB misses that hit in the L2 dTLB, and "dTLB-load-misses" to a counter for L1 DTLB misses that caused L2 DTLB misses and therefore also caused page table walks. This results in a much more accurate view of data TLB performance: 60,961,781 L1-dcache-loads 4,601 dTLB-loads 963 dTLB-load-misses # 20.93% of all dTLB cache hits Note that for all AMD families, data loads and stores are combined in a single accesses counter, so no 'L1-dcache-stores' are reported separately, and stores are counted with loads in 'L1-dcache-loads'. Also note that the "% of all dTLB cache hits" string is misleading because (a) "dTLB cache": although TLBs can be considered caches for page tables, in this context, it can be misinterpreted as data cache hits because the figures are similar (at least on Intel), and (b) not all those loads (technically accesses) technically "hit" at that hardware level. "% of all dTLB accesses" would be more clear/accurate. Instruction TLB On Intel machines, 'iTLB-loads' measure iTLB misses that hit in the STLB, and 'iTLB-load-misses' measure iTLB misses that also missed in the STLB and completed a page table walk. For AMD Family 17h and above, for 'iTLB-loads' we replace the erroneous instruction cache fetches counter with PMCx084 "L1 ITLB Miss, L2 ITLB Hit". For 'iTLB-load-misses' we still use PMCx085 "L1 ITLB Miss, L2 ITLB Miss", but set a 0xff umask because without it the event does not get counted. Branch Predictor (BPU) PMCs 0xc2 and 0xc3 continue to be valid across all AMD Families. Node Level Events Family 17h does not have a PMCx0e9 counter, and corresponding counters have not been made available publicly, so for now, we mark them as unsupported for Families 17h and above. Reference: "Open-Source Register Reference For AMD Family 17h Processors Models 00h-2Fh" Released 7/17/2018, Publication #56255, Revision 3.03: https://www.amd.com/system/files/TechDocs/56255_OSRR.pdf [ mingo: tidied up the line breaks. ] Signed-off-by: Kim Phillips Cc: # v4.9+ Cc: Alexander Shishkin Cc: Arnaldo Carvalho de Melo Cc: Borislav Petkov Cc: H. Peter Anvin Cc: Janakarajan Natarajan Cc: Jiri Olsa Cc: Linus Torvalds Cc: Martin Liška Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Pu Wen Cc: Stephane Eranian Cc: Suravee Suthikulpanit Cc: Thomas Gleixner Cc: Thomas Lendacky Cc: Vince Weaver Cc: linux-kernel@vger.kernel.org Cc: linux-perf-users@vger.kernel.org Fixes: e40ed1542dd7 ("perf/x86: Add perf support for AMD family-17h processors") Signed-off-by: Ingo Molnar --- arch/x86/events/amd/core.c | 111 ++++++++++++++++++++++++++++++++++++- 1 file changed, 108 insertions(+), 3 deletions(-) diff --git a/arch/x86/events/amd/core.c b/arch/x86/events/amd/core.c index d45f3fbd232e..f15441b07dad 100644 --- a/arch/x86/events/amd/core.c +++ b/arch/x86/events/amd/core.c @@ -116,6 +116,110 @@ static __initconst const u64 amd_hw_cache_event_ids }, }; +static __initconst const u64 amd_hw_cache_event_ids_f17h + [PERF_COUNT_HW_CACHE_MAX] + [PERF_COUNT_HW_CACHE_OP_MAX] + [PERF_COUNT_HW_CACHE_RESULT_MAX] = { +[C(L1D)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */ + [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */ + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */ + [C(RESULT_MISS)] = 0, + }, +}, +[C(L1I)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */ + [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */ + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = -1, + [C(RESULT_MISS)] = -1, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, +}, +[C(LL)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, +}, +[C(DTLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */ + [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */ + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, +}, +[C(ITLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */ + [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */ + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = -1, + [C(RESULT_MISS)] = -1, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = -1, + [C(RESULT_MISS)] = -1, + }, +}, +[C(BPU)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */ + [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */ + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = -1, + [C(RESULT_MISS)] = -1, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = -1, + [C(RESULT_MISS)] = -1, + }, +}, +[C(NODE)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = 0, + [C(RESULT_MISS)] = 0, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = -1, + [C(RESULT_MISS)] = -1, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = -1, + [C(RESULT_MISS)] = -1, + }, +}, +}; + /* * AMD Performance Monitor K7 and later, up to and including Family 16h: */ @@ -865,9 +969,10 @@ __init int amd_pmu_init(void) x86_pmu.amd_nb_constraints = 0; } - /* Events are common for all AMDs */ - memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, - sizeof(hw_cache_event_ids)); + if (boot_cpu_data.x86 >= 0x17) + memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids)); + else + memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids)); return 0; } -- 2.30.2